(3+1)(3^2+1)(3^4+1)......(3^32+1)
=1/2×(3-1)(3+1)(3^2+1)(3^4+1)......(3^32+1)
=1/2×(3^2-1)(3^2+1)(3^4+1)......(3^32+1)
=1/2×(3^4-1)(3^4+1)......(3^32+1)
=……
=1/2(3^32-1)(3^32+1)
=1/2(3^64-1)
=1/2·3^64-1/2
故原式=1/2·3^64-1/2-1/2·3^64=-1/2
解答:
(3+1)(3^2+1)(3^4+1)......(3^32+1)-2分之3的64次方
=(1/2)(3-1)(3+1)(3^2+1)(3^4+1)......(3^32+1)-2分之3的64次方
=(1/2)(3^2-1)(3^2+1)(3^4+1)......(3^32+1)-2分之3的64次方
=(1/2)(3^4-1)(3^4+1)......(3^32+1)-2分之3的64次方
=……
=(1/2)(3^64-1)-(1/2)3^64
=-1/2