高中数学学习方法谈
进入高中以后,往往有不少同学不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。出现这样的情况,原因很多。但主要是由于学生不了解高中数学教学内容特点与自身学习方法有问题等因素所造成的。在此结合高中数学教学内容的特点,谈一下高中数学学习方法,供同学参考。
一、 高中数学与初中数学特点的变化
1、数学语言在抽象程度上突变
初、高中的数学语言有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及非常抽象的集合语言、逻辑运算语言、函数语言、图象语言等。
2、思维方法向理性层次跃迁
高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么等。因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。
3、知识内容的整体数量剧增
高中数学与初中数学又一个明显的不同是知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。
4、知识的独立性大
初中知识的系统性是较严谨的,给我们学习带来了很大的方便。因为它便于记忆,又适合于知识的提取和使用。但高中的数学却不同了,它是由几块相对独立的知识拼合而成(如高一有集合,命题、不等式、函数的性质、指数和对数函数、指数和对数方程、三角比、三角函数、数列等),经常是一个知识点刚学得有点入门,马上又有新的知识出现。因此,注意它们内部的小系统和各系统之间的联系成了学习时必须花力气的着力点。
二、如何学好高中数学
1、养成良好的学习数学习惯。
建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
2、及时了解、掌握常用的数学思想和方法
学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。
3、逐步形成 “以我为主”的学习模式
数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。
4、针对自己的学习情况,采取一些具体的措施
² 记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中
拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
² 建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再
犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
² 熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化
或半自动化的熟练程度。
² 经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,
使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。
² 阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课
外题,加大自学力度,拓展自己的知识面。
² 及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩
固,消灭前学后忘。
² 学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解
题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。
² 经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学
思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。
² 无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而
不是一味地去追求速度或技巧,这是学好数学的重要问题。
心态很重要,要学会调整!做题的时候不要太急,把问题全面的分析清楚。做完后要想想还有什么漏洞没有。
遇到难题的时候不要死缠着,不会做可以先做其他的。千万不要影响到自己的心情,不能浮躁。
数学融会贯通很重要,这个你应该很清楚。把学习的东西要联系起来。
特别是遇到不会做的题目时,想想它跟我们学的哪方面有联系。它到底要考 我们什么。这样题一般可以很好解决。
多做的一些中等或容易的题目,增加自信。
计算速度要快,做到容易的题目不能丢分。
如果你数学基础的确很好,我相信高考考120多应该不是什么问题。
因为时间比较紧,所以我只能说这么多了。
我是北京大学数学系的
有什么问题可以问我。
注意下不要在会的地方失分
选择和填空是关键
一般选择可以直接排除两个答案,只是在剩下两个里面选
填空自己注意下,数字不会很烦,如果你发现计算量较大的话,一般错了
这个关键在于你是否熟练
一 预习、听课、复习、作业的方法
与数学课堂教学相适应的学习方法,就是预习、听课、复习、作业的方法等的基本方法。
1、预习的方法
预习是上课前对即将要上的数学内容进行阅读,了解其梗概,做到心中有数,以便于掌握听课的主动权。预习是独立学习的尝试,对学习内容是否正确理解,能否把握其重点、关键,洞察到隐含的思想方法等,都能及时在听课中得到检验、加强或矫正,有利于提高学习能力和养成自学的习惯,所以它是数学学习中的重要一环。
数学具有很强的逻辑性和连贯性,新知识往往是建立在旧知识的基础上。因此,预习时就要找出学习新知识所需的知识,并进行回忆或重新温习,一旦发现旧知识掌握得不好,甚至不理解时,就要及时采取措施补上,克服因没有掌握好或遗忘带来的学习障碍,为顺利学习新内容创造条件。
预习的方法,除了回忆或温习学习新内容所需的旧知识(或预备知识)外,还应该了解基本内容,也就是知道要讲些什么,要解决什么问题,采取什么方法,重点关键在哪里,等等。预习时,一般采用边阅读、边思考、边书写的方式,把内容的要点、层次、联系划出来或打上记号,写下自己的看法或弄不懂的地方与问题,最后确定听课时要解决的主要问题或打算,以提高听课的效率。在时间的安排上,预习一般放在复习和作业之后进行,即做完功课后,把下次课要学的内容看一遍,其要求则根据当时具体情况灵活掌握。如果时间允许,可以多思考一些问题,钻研得深入一些,甚至可做做练习题或习题;时间不允许,可以少一些问题,留给听课去解决的问题就多一些,不必强求一律。
2、听课的方法
听课是学习数学的主要形式。在教师的指导、启发、帮助下学习,就可以少走弯路,减少困难,能在较短的时间内获得大量系统的数学知识,否则事倍功半,难以提高效率。所以听课是学好数学的关键。
听课的方法,除在预习中明确任务,做到有针对性地解决符合自己的问题外,还要集中注意力,把自己思维活动紧紧跟上教师的讲课,开动脑筋,思考教师怎样提出问题,分析问题,解决问题,特别要从中学习数学思维的方法,如观察、比较、分析、综合、归纳、演绎、一般化、特殊化等,就是如何运用公式、定理,了解其中隐含着的思想方法。
听课时,一方面理解教师讲的内容,思考或回答教师提出的问题,另一方面还要独立思考,鉴别哪些知识已经听懂,哪些还有疑问或有新的问题,并勇于提出自己的看法。如果课内一时不可能解决,就应把疑问或问题记下,留待自己去解决或请教老师,并继续专心听老师讲课,切勿因一处没有听懂,思维就停留在这里,而影响后面的听课。一般,听课时要把老师讲课的要点、补充的内容与方法记下,以备复习之用。
3、复习的方法
复习就是把学过的数学知识再进行学习,以达到深入理解、融会贯通、精炼概括、牢固掌握的目的。复习应与听课紧密衔接、边阅读教材边回忆听课内容或查看课堂笔记,及时解决存在的知识缺陷与疑问。对学习的内容务求弄懂,切实理解掌握。如果有的问题经过较长时间的思索,还得不到解决,则可与同学商讨或请老师解决。
复习还要在理解教材的基础上,沟通知识间的内在联系,找出其重点、关键,然后提炼概括,组成一个知识系统,从而形成或发展扩大数学认知结构。
复习是对知识进行深化、精炼和概括的过程,它需要通过手和脑积极主动地开展活动才能达到,因此,在这个过程中,提供了发展和提高能力的极好机会。数学的复习,不能仅停留在把已学的知识温习记忆一遍的要求上,而要去努力思考新知识是怎样产生的,是如何展开或得到证明的,其实质是什么,怎样应用它等。
4、作业的方法
数学学习往往是通过做作业,以达到对知识的巩固、加深理解和学会运用,从而形成技能技巧,以及发展智力与数学能力。由于作业是在复习的基础上独立完成的,能检查出对所学数学知识的掌握程度,能考查出能力的水平,所以它对于发现存在的问题,困难,或做错的题目较多时,往往标志着知识的理解与掌握上存在缺陷或问题,应引起警觉,需及早查明原因,予以解决。
通常,数学作业表现为解题,解题要运用所学的知识和方法。因此,在做作业前需要先复习,在基本理解与掌握所学教材的基础上进行,否则事倍功半,花费了时间,得不到应有的效果。
解题,要按一定的程序、步骤进行。首先,要弄清题意,认真读题,仔细理解题意。如哪些是已知的数据、条件,哪些是未知数、结论,题中涉及到哪些运算,它们相互之间是怎样联系着的,能否用图表示出来,等等,要详加推敲,彻底弄清。
其次,在弄清题意的基础上,探索解题的途径,找出已知与未知,条件与结论之间的联系。回忆与之有关的知识方法,学过的例题、解过的题目等,并从形式到内容,从已知数、条件到未知数、结论,考虑能否利用它们的结果或方法,可否引进适当辅助元素后加以利用是否能找出与该题有关的一个特殊问题或一个类似问题,考察解决它们对当前问题有什么启发;能否把分开,一部分一部分加以考察或变更,再重新组合,以达到所求结果,等等。这就是说,在探索解题过程中,需要运用联想、比较、引入辅助元素、类比、特殊化、一般化、分析、综合等一系列方法,并从解题中学会这一系列探索的方法。
第三,根据探索得到的解题方案,按照所要求的书写格式和规范,把解的过程叙述出来,并力求简单、明白、完整。最后还要对解题进行回顾,检查解答是否正确无误,每步推理或运算是否立论有据,答案是否说尽无遗;思考一下解题方法可否改进或有否新的解法,该题结果能否推广(事实上中学课本中不少题目是可以推广的)等,并小结一下解题的经验,进而发展与完善解题的思想方法,总结出带有规律性的东西来。
二 “由薄到厚”和“由厚到薄”的学习方法
“由薄到厚”和“由厚到薄”是数学家华罗庚多次提到的治学方法,他认为学习要经过“由薄到厚”和“由厚到薄”的过程。“由薄到厚”是理解和弄懂所学的数学知识,知其然并知其所以然。学习不仅要理解和记住概念、定理、公式、法则等,而且还要想一想它们是如何得来的,与前面的知识是怎样联系着的,表达中省略了什么,关键在哪里,对知识是否有新的认识,有否想到其他的解法等等。这样细加分析、考虑后,就会对内容增添某些注解,补充一些的解法或产生新的认识等,出现了“书越读越厚”。
但是学习不能到此止步,还需要把学过内容贯串起来,加以融会贯通,提炼出它的精神实质,抓住重点、线索和基本思想方法,组织整理成精炼的内容,这就是一个“由厚到薄”的过程。在这过程中,不是量的减少,而是质的提高,所以具有更重要的作用。通常在总结一章、几章或一本书的内容时,就要有这种要求,运用这种方法。这时由于知识出现高度概括,就更能促进知识的迁移,也更有利于进一步学习。
“由薄到厚”和“由厚到薄”是一个螺旋上升的过程,它具有不同的层次和要求,学习中需要经过从低到高多次的运用,才能收到应有的效果。这一学习方法体现着“分析”与“综合”、“发散”与“收敛”的辩证统一,就是说数学学习需要这两者统一起来。
三 接受学习与发现学习相结合的方法
数学学习应是有意义接受学习和有意义发现学,如何使两者互相配合、有机结合,充分 发挥各自和综合的效力这是学习方法的一个重要方面。
接受学习,不论是听系统的讲授,还是以定论的形式给出的教材,都不涉及任何的独立发现。但在学习过程中,学生处于积极、主动的状态,并非只是单纯的接受,他们总不断地向自己提出问题,如定理是如何发现或产生的,证明的思路是怎样想出来的,中间要攻破哪几个关键的地方。许多数学家都十分强调“应该不只胀到书面上,而且还要看到书背后的东西。”在进行接受学习时,还要增添某些发现学习的万分,从中学习创造、发明的思想和方法,而不仅仅停留在知识的接受上。
发现学习,是依靠自己对所提供的材料或问题的观察、比较、分析、综合等,独立地了现的解决某问题,从而获得新知识。在解决问题时,要真正理解问题中所涉及的要领、原理、公式、定理和法则,懂得每步操作的意义,以及提出假设、检验假设的目的等。解决问题,总需要联想以往学习过和知识与方法,一时回忆不起来的,还要重新复习,以求进一步理解的应用。有是遇到困难问题,甚至还在查看参考书或请教老师者能解决。可见,这期间也穿插着接受学习。
数学学习既需要接受学习,以便在短时间内获得大量前人积累起来的宝贵知识财富,也需要发现学习,以利于思维、培养创造能力。因此,学习要根据自身的年龄、学习能力特点和教学内容的要求,使两者紧密结合起来。
-----------------------------------------------------------------------------------------------
第二篇 数学,与其他学科比起来,有哪些特点?它有什么相应的思想方法?它要求我们具备什么样的主观条件和学习方法?本讲将就数学学科的特点,数学思想以及数学学习方法作简要的阐述。
一、数学的特点(一)
数学的三大特点严谨性、抽象性、广泛的应用性所谓数学的严谨性,指数学具有很强的逻辑性和较高的精通性,一般以公理化体系来体现。
什么是公理化体系呢?指得是选用少数几个不加定义的概念和不加逻辑证明的命题为基础,推出一些定理,使之成为数学体系,在这方面,古希腊数学家欧几里得是个典范,他所著的《几何原本》就是在几个公理的基础上研究了平面几何中的大多数问题。在这里,哪怕是最基本的常用的原始概念都不能直观描述,而要用公理加以确认或证明。
中学数学和数学科学在严谨性上还是有所区别的,如,中学数学中的数集的不断扩充,针对数集的运算律的扩充并没有进行严谨的推证,而是用默认的方式得到,从这一点看来,中学数学在严谨性上还是要差很多,但是,要学好数学却不能放松严谨性的要求,要保证内容的科学性。
比如,等差数列的通项是通过前若干项的递推从而归纳出通项公式,但要予以确认,还需要用数学归纳法进行严格的证明。
数学的抽象性表现在对空间形式和数量关系这一特性的抽象。它在抽象过程中抛开较多的事物的具体的特性,因而具有十分抽象的形式。它表现为高度的概括性,并将具体过程符号化,当然,抽象必须要以具体为基础。
至于数学的广泛的应用性,更是尽人皆知的。只是在以往的教学、学习中,往往过于注重定理、概念的抽象意义,有时却抛却了它的广泛的应用性,如果把抽象的概念、定理比作骨骼,那么数学的广泛应用就好比血肉,缺少哪一个都将影响数学的完整性。高中数学新教材中大量增加数学知识的应用和研究性学习的篇幅,就是为了培养同学们应用数学解决实际问题的能力。
二、高中数学的特点往往有同学进入高中以后不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。为什么会这样呢?让我们先看看高中数学和初中数学有些什么样的转变吧。
1、理论加强2、课程增多3、难度增大4、要求提高
三、掌握数学思想高中数学从学习方法和思想方法上更接近于高等数学。学好它,需要我们从方法论的高度来掌握它。我们在研究数学问题时要经常运用唯物辩证的思想去解决数学问题。数学思想,实质上就是唯物辩证法在数学中的运用的反映。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,初步公理化思想,数形结合思想,运动思想,转化思想,变换思想。
例如,数列、一次函数、解析几何中的直线几个概念都可以用函数(特殊的对应)的概念来统一。又比如,数、方程、不等式、数列几个概念也都可以统一到函数概念。
再看看下面这个运用"矛盾"的观点来解题的例子。
已知动点Q在圆x2+y2=1上移动,定点P(2,0),求线段PQ中点的轨迹。
分析此题,图中P、Q、M三点是互相制约的,而Q点的运动将带动M点的运动;主要矛盾是点Q的运动,而点Q的运动轨迹遵循方程x02+y02=1①;次要矛盾关系:M是线段PQ的中点,可以用中点公式将M的坐标(x,y)用点Q的坐标表示出来。
x=(x0+2)/2 ②y=y0/2 ③显然,用代入的方法,消去题中的x0、y0就可以求得所求轨迹。
数学思想方法与解题技巧是不同的,在证明或求解中,运用归纳、演绎、换元等方法解题问题可以说是解题的技术性问题,而数学思想是解题时带有指导性的普遍思想方法。在解一道题时,从整体考虑,应如何着手,有什么途径?就是在数学思想方法的指导下的普遍性问题。
有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。只有在解题思想的指导下,灵活地运用具体的解题方法才能真正地学好数学,仅仅掌握具体的操作方法,而没有从解题思想的角度考虑问题,往往难于使数学学习进入更高的层次,会为今后进入大学深造带来很有麻烦。
在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
要打赢一场战役,不可能只是勇猛冲杀、一不怕死二不怕苦就可以打赢的,必须制订好事关全局的战术和策略问题。解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。一般地,在解题中所采取的总体思路,是带有原则性的思想方法,是一种宏观的指导,一般性的解决方案。
中学数学中经常用到的数学思维策略有:
以简驭繁、数形结全、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅如果有了正确的数学思想方法,采取了恰当的数学思维策略,又有了丰富的经验和扎实的基本功,一定可以学好高中数学。
四、学习方法的改进身处应试教育的怪圈,每个教师和学生都不由自主地陷入"题海"之中,教师拍心某种题型没讲,高考时做不出,学生怕少做一道题,万一考了损失太惨重,在这样一种氛围中,往往忽视了学习方法的培养,每个学生都有自己的方法,但什么样的学习方法才是正确的方法呢?是不是一定要"博览群题"才能提高水平呢?
现实告诉我们,大胆改进学习方法,这是一个非常重大的问题。
(一)
学会听、读我们每天在学校里都在听老师讲课,阅读课本或者资料,但我们听和读对不对呢?
让我们从听(听讲、课堂学习)和读(阅读课本和相关资料)两方面来谈谈吧。
学生学习的知识,往往是间接的知识,是抽象化、形式化的知识,这些知识是在前人探索和实践的基础上提炼出来的,一般不包含探索和思维的过程。因此必须听好老师讲课,集中注意力,积极思考问题。弄清讲得内容是什么?怎么分析?理由是什么?采用什么方法?还有什么疑问?只有这样,才可能对教学内容有所理解。
听讲的过程不是一个被动参预的过程,在听讲的前提下,还要展开来分析:这里用了什么思想方法,这样做的目的是什么?为什么老师就能想到最简捷的方法?这个题有没有更直接的方法?
"学而不思则罔,思而不学则殆",在听讲的过程中一定要有积极的思考和参预,这样才能达到最高的学习效率。
阅读数学教材也是掌握数学知识的非常重要的方法。只有真正阅读和数学教材,才能较好地掌握数学语言,提高自学能力。一定要改变只做题不看书,把课本当成查公式的辞典的不良倾向。阅读课本,也要争取老师的指导。阅读当天的内容或一个单元一章的内容,都要通盘考虑,要有目标。
比如,学习反正弦函数,从知识上来讲,通过阅读,应弄请以下几个问题:
(1) 是不是每个函数都有反函数,如果不是,在什么情况下函数有反函数?
(2)正弦函数在什么情况下有反函数?若有,其反函数如何表示?
(3)正弦函数的图象与反正弦函数的图象是什么关系?
(4)反正弦函数有什么性质?
(5)如何求反正弦函数的值?
(二)
学会思考爱因斯坦曾说:"发展独立思考和独立判断的一般能力应当始终放在首位",勤于思考,善于思考,是对我们学习数学提出的最基本的要求。一般来说,要尽力做到以下两点。
1、善于发现问题和提出问题2、善于反思与反求
------------------------------------------------
第三篇 谢达鸿老师在与学生的交流过程中,感觉到学生在学习中经常遇到的问题对其学习进程有很大的影响。
作为教育工作者,对待学生学习上的问题,处理问题的心态与家长有所不同,家长由于亲情关系,容易急燥,然而对待学习和成长方面的问题,急燥是不解决问题的,必须要有科学的方式、方法和教育手段,引导学生解决这些学习中的问题。
数学有一个特点是重要、枯燥。重要是显而易见的,数学作为基础学科,高考、中考都考数学;同时它又是枯燥乏味的,这似乎是一对矛盾,要处理这对矛盾,就要解决一个数学学习当中的技巧性问题和心理问题。当然不可能人人都能把数学学好,由于各人的性向不同,有的人倾向于人文学科,有的人倾向于逻辑思维,有的人倾向于空间思维,有的人则倾向于动手能力…..各人的倾向性不一样,擅长的方面也各不相同,对数学能达到的层次也会参差不齐,但有一点,数学的一些基本要求一定要掌握,例如数学中的一些基本原理、数学方法不能有半点马虎。因为无论将来我们从事什么行业,数学作为一种基本的处理事物的方法都非常重要。一般的孩子只要通过正确的方法,正确的引导都能够达到。以下是谢达鸿老师强调的数学学习中的几项重要内容:
一.数学中关于概念的问题
概念的形成需要一个过程。与人生哲理等概念不同,数学概念具有叠加性,也就是说新概念是在旧概念叠加的基础上来认识的。概念是数学中的一个根本问题,不是靠背,而是在不断地运用中逐渐形成的,须经过比较、实践、摸索、总结、归纳等过程,最后建立一个完整的概念。这个过程甚至可以说是痛苦的,漫长的一个阶段。
概念具有长期性。每个概念都有一个失败— 认识 —再失败的过程,伴随着你对这个概念的错误理解,在挫折中不断加深的。
概念是随着一个人知识的增加而不断深入的。学数学对一个人建立完整的思维方式很重要,随着对不同数学概念的深入理解,人们处理问题的方式可以越来越趋于严谨。
要建立一个数学的概念网。数学是一个个概念的点阵,所有的相关的、从属的概念要在头脑中形成一个网络。学概念要把不能纳入其中的或相关概念认识清楚。总概念中各相关概念是怎样发展的要有一个清析的脉络。
从不同的层面上来理解一个数学概念。有比较才有认识,对于一个数学概念要擅于从正面、侧面、上面、下面等各个层面上来认识它。对于相似的、类似的概念或概念的内部关系认识不清,不利于理解概念,这说明数学末学深入。
二.运算能力:符号化、模式化是数学的一大特点,对这点我们应该有深刻的认识。
模式化。数学的一些定理、原理、公理都有一定的模式,“因为……所以…”即最简单的一种模式,对各种数学模式的理解认识也是对人的逻辑思维能力的训练。
符号化。数学的符号与表达性符号不同,文学艺术中的表达性符号是需要我们仔细体会其中的含义的;而数学中的符号是一种替代性符号,它无需我们想其含义,作用就在于推导,它只是一个替身,帮助我们进行数学思维,所以我们不可以在它的含义上耗费太多的精力。数学就是符号游戏,我们对符号必须精通,才能进行迅速变形。
中学阶段有几个重要的定理:三垂线定理、正余弦定理、根与系数的关系、二次三项式定理。对这几个定理的运用必须熟练掌握。
三.做题技巧。
从做题方式来分,平时作业可分为硬作业和软作业两种:硬作业是指每天需要认认真真做的作业,这类作业要按正规的步骤一丝不苟地做,旨在训练自己的笔头功夫和书写能力;软作业是指每日需抽出一定的时间来浏览若干习题,这类题主要是用来锻炼自己的思维能力的,具体做法是无需动笔,眼睛看着习题,大脑中迅速掠过这道题的思路、做法,整个过程有点类似空对空。所以在平日做题中两种方式要搭配使用,认真做的题和浏览的题要相济并用。
做题要有节奏,难易结合。做题要讲质量,不能把精力都放在做偏、难、怪的题型上,因为高考中有20%的难题,平时将重心放在难题上,基础知识难免会偏失,所以平时适度地做一些中等难度的题即可,关键是要学好基础知识,循序渐进。
做题要留下体会,留下痕迹,学习分为三个过程:模仿、品味、迁移。模仿是初始阶段经常作用的一种方式,以老师或教科书为参照,按部就班地做。经过一次次地模仿,我们自己对这些记忆中的题型在大脑中进一步地加工、体会,形成自己对这类题的成型的理解。经过前两个阶段的积累,最后达到将原知识体系与现有知识的相互融合,就实现了对新、旧知识的最新体会。
四.数学方法。常见的数学方法有如下几种:
化归法,即代入消元法。将复杂化问题化为若干个简单的问题的一种思想。高二、高三数学中消参的思想就是此法的一例。
注意经常对知识进行归纳、整理、总结,促进学过的知识更加系统化、条理化,解题时就能比较顺利地将内在关系理顺。
做题时应树立一种次序和关联的思想。数学的题干中各要素一般都是按一定的次序和关系排放的,做题前要审清题意,分先后,分主次,各个击破。
方程的思想方法。
分类讨论的方法。
------------------------------------------------
第四篇 数学学习方法
一、全面复习,把书读薄
从历年试卷的内容分布上可以看出,凡是考试大纲中提及的内容,都可能考到,甚至某些不太重要的内容,在某一年可以在大题中出现,如98年数学一中,不但第三题是一道纯粹的解析几何题,而且还有两道题是与线性代数结合考了解析几何的内容,可见猜题的复习方法是靠不住的,而应当参照考试大纲,全面复习,不留遗漏。
全面复习不是生记硬背所有的知识,相反是要抓住问题的实质和各内容,各方法的本质联系,把要记的东西缩小到最小程度,(要努力使自已理解所学知识,多抓住问题的联系,少记一些死知识),而且,不记则已,记住了就要牢靠。事实证明,有些记忆是终生不忘的,而其它的知识又可以在记住基本知识的基础上,运用它们之间的联系而得到,这就是全面复习的含义。
二、突出重点,精益求精
在考试大纲要求中,对内容有理解,了解,知道三个层次的要求;对方法有掌握,会(或者能)两个层次的要求,一般地说,要求理解的内容,要求掌握的方法,是考试的重点。在历年考试中,这方面考题出现的概率较大;在同一份试卷中,这方面试题所占有的分数也较多。“猜题”的人,往往要在这方面下功夫。一般说来,也确能猜出几分来。但遇到综合题,这些题在主要内容中含有次要内容。这时,“猜题”便行不通了。
我们讲的突出重点,不仅要在主要内容和方法上多下功夫,更重要的是要去寻找重点内容与次要内容间的联系,以主带次,用重点内容担挈整个内容。主要内容理解透了,其它的内容和方法迎刃而解,要抓住主要内容,不是放弃次要内容而孤立主要内容,而是从分析各内容的联系,从比较中自然地突出主要内容。如微分中值定理,有罗尔定理,拉格朗日定理,柯西定理和泰勒公式。由于罗尔定理是拉格朗日定理的特殊情况,而柯西定理和泰勒公式又是拉格朗日定理的推广。比较这些关系,便自然得到拉格朗日定理是核心,这这个定理搞深搞透,并从联系中掌握好其它几个定理,在考试大纲中,罗尔定理与拉格朗日定理都是要求理解的内容,都是考试重点,我们更突出拉氏定理,可谓是精益求精。
三、基本训练反复进行
学习数学,要做一定数量的题,把基本功练熟练透,但我们不主张“题海”战术,而是提倡精练,即反复做一些典型的题,做致电一题多解,一题多变。要训练抽象思维能力,对些基本定理的证明,基本公式的推导,以及一些基本练习题, 要作到不用书写,就象棋手下“盲棋”一样,只需用脑子默想,即能得到下确答案。这就是我们在前言中提到的,在20分钟内完成10道客观题.其中有些是不用动笔,一眼就能乍出答案的题,这样才叫训练有素,“熟能生巧”,基本功扎实的人,遇到难题办法也多,不易被难倒。相反,作练习时,眼高手低,总找难题作,结果上了考场,遇到与自己曾经作过的类似的题目都有可能不会。不少考生把会作的题算错了,归为粗心大意,确实人会有粗心的,但基本功扎实的人,出了错立即会发现,很少会“粗心”地出错。
我高中数学也狂差,所以能够体会你的痛苦。
既然已经没剩多少时间了,那就好好复习基础题,从简单的题目入手,一题一题来,基础的题目总要做好。不用羡慕那些平时很会做复杂题目的人,你只要打好基础就可以。等基础掌握好了,有时间再多看看那些稍微复杂一点的题,那一般都是几小题组成,你能做多少就做多少,会做的认真做,尽量做好,实在不会的就干脆放弃,傻盯着看只会浪费时间。
我是04年参加的高考,结果数学成绩出来竟然还不错,所以在此提一下个人建议。祝你顺利!
我也是过来人了,03年高考,现在已经工作了,我当时的数学可以说是不错,我们那一届的题还是很难的。
我也赞成楼上的,反对题海,但不是说不做题,每种题都是要做的,而你现在的时间也是很有限了,你现在可以把你之前做的卷子拿出来,每一题都仔细的好好的看一下,从头到尾,因为不论大题还是小题它们之间也都是有联系的,这就是温故而知新。这个时候很重要,一定要静下心来,好好的坐在教室,心态很重要的。再就是生活起居了,要把生物钟改回高考的时间,算一下高考是几点考,就在那个点这段时间不要睡了;也要注意别吃不干净的东西。。。呵呵,祝你好运,考得好成绩。