由y=sinx(0≤x≤π),得x=arcsiny(0≤x≤π2)和x=π-arcsiny(π2≤x≤π),从而所求旋转体体积是这两个曲线与坐标轴所围成平面图形绕y轴旋转而成旋转体的体积之差∴V=π∫10(π-arcsiny)2dy-π∫10(arcsiny)2dy=π∫10[π2-2arcsiny]dy=π3-2π[yarcsiny|10-∫10y1-y2dy]=π3-π2-21-y2|10=π3-π2-2