求函数f(x)=(sinx+cosx)^2-2cos^2x最小正周期

2024-12-22 23:39:50
推荐回答(4个)
回答1:

f(x)=(sinx+cosx)^2-2cos^2x=1-2cos^2x+2sinxcosx=sin2x-cos2x=√2sin(2x-π/4)
f(x)最小正周期T=π
f(-π/12)=√2sin(-π/6-π/4)=-√2sin5π/12<0
f(π/6)=√2sin(π/3-π/4)=√2sinπ/12>0
所以f(-π/12)

回答2:

f(x)=(sinx+cosx)^2-2cos^2x=(sinx)^2+(cosx)^2+2sinxcosx-(1+cos2x)=1+sin2x-1-cos2x=sin2x-cos2x
=(根号2)[sin2x*(根号2)/2-cos2x*(根号2)/2]=(根号2)sin(2x-π/4)
(1).f(x)最小正周期为2π/2=π.
(2)f(-π/12)=(根号2)sin[2*(-π/12)-π/4]=(根号2)sin(-π/6-π/4)=(根号2)sin(-5π/12),
f(π/6)=(根号2)sin[2*(π/6)-π/4]=(根号2)sin(π/3-π/4)=(根号2)sin(π/12),
因为y=sinx在[-π/2,π/2]上为增函数,-π/2=-6π/12<-5π/12<π/12<π/2,
所以sin(-5π/12)f(-π/12)

回答3:

因为 f(x)=(sinx+cosx)^2-2(cosx)^2
=(sinx)^2+2sinxcosx-(cosx)^2
=sin2x-cos2x
=-√2cos(2x+π/4)。
(1),f(x)最小正周期为:T=2π/2=π。
(2),f(-π/12)=√2cos(-π/6+π/4)=-√2cos(π/12),
f(π/6)=√2cos(π/3+π/4)=-√2cos(7π/12)。
而 0<π/12<7π/12<π,
函数 y=cosx 在[0,π]是减函数,
所以 f(-π/12)

回答4:

f(x)=(sinx+cosx)^2-2cos^2x=1-2cos^2x+2sinxcosx=sin2x-cos2x=√2sin(2x-π/4)
(1).f(x)最小正周期T=2π/2=π
(2),f(-π/12)=√2cos(-π/6+π/4)=-√2cos(π/12),
f(π/6)=√2cos(π/3+π/4)=-√2cos(7π/12)。
而 0<π/12<7π/12<π,
函数 y=cosx 在[0,π]是减函数,
所以 f(-π/12)