设数列{Ak}的前n项和为Sn. 已知对所有正整数n, Sn=n(a1+an)⼀2,证明数列{Ak}是等差数列.

2024-12-22 17:33:48
推荐回答(1个)
回答1:

s(n+1)=(n+1)(a1+a(n+1))/2,s(n+1)-s(n)=a(n+1)=(a1+(n+1)a(n+1)-n*a(n))/2,整理得
a1+(n-1)a(n+1)-na(n)=0,又a1+na(n+2)-(n+1)a(n+1)=0;上两式相减得na(n+2)-2na(n+1)+na(n)=0,即a(n+2)-a(n+1)=a(n+1)-a(n).故为等差数列!