根据角平分线性质:
A关于∠C的角平分线的对称点A1在BC上
A关于∠B的角平分线的对称点A2在BC上
A(-1,5) ==> A1(-1,-1)
设A2(a,b)
(b-5)/(a+1) · 1 = -1 (AA2⊥y=x+2),
(b+5)/2 = (a-1)/2 + 2 ( 线段AA2中点在y=x+2上)
==> a=3,b=1,A2(3,1)
直线BC(A1A2): y = (x-1)/2
y=(x-1)/2,y=x+2 ==> B(-5,-3)
y=(x-1)/2,y=2 ==> C(5,2)
直线AB(y=2x+7)与y=2交于E(-2.5,2)
S = S(AEC)+S(BEC) = 1/2 * EC *|Yb-Ya| = 1/2*7.5*8 = 30
因为两条角平分线是特殊直线,易得
A关于∠C的角平分线的对称点A1在BC上(-1,-1)
A关于∠B的角平分线的对称点A2在BC上(3,1)
A1、A2两点确定一条直线与两个角平分线相交与B、C
得B、C的x坐标分别为-5,5
最后,面积=AA1C+AA1B=AA1*(5-(-5))/2=6*5=30
解法跟一楼差不多,但是更简洁一点。
因为两条角平分线是特殊直线,易得
A关于∠C的角平分线的对称点A1在BC上(-1,-1)
A关于∠B的角平分线的对称点A2在BC上(3,1)
A1、A2两点确定一条直线与两个角平分线相交与B、C
得B、C的x坐标分别为-5,5
最后,面积=AA1C+AA1B=AA1*(5-(-5))/2=6*5=30
这个不难的 自己好好分析吧
zxdfgbh ijuhgfddsdfghjwDFGCFCTRVH