高数定积分物理应用涉及哪些公式

2025-01-31 03:01:45
推荐回答(4个)
回答1:

解答:

直接把圆棒分成无数个小段,圆棒积分后必然有对称性,只算对称线上的就可以了。对角度积分,每小段长度Rde,质量dm=pRde。

定积分

定积分的正式名称是黎曼积分。用黎曼自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。实际上,定积分的上下限就是区间的两个端点a,b。

回答2:

如下图:

定积分的正式名称是黎曼积分。用黎曼自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。实际上,定积分的上下限就是区间的两个端点a,b。

一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。

回答3:

我总结的,后来的同学可以抄一下笔记,记得点赞哦,欢迎评论补充

回答4:

个人感觉挺重要的,因为这种题目不难,但却很容易被人忽略。现在最重要的就是定积分在几何中的应用,物理中的应用可能有点削弱了。不过其实里面的内容不多。对于几何应用,主要考察:计算平面面积,计算曲线长度,计算旋转体体积。而物理应用主要考察:计算水压力,计算功,计算引力(这个基本不考)。当然,后面重积分还有一些应用,到时候在慢慢总结吧。