大学物理问题

大学物理问题如图 请不要瞎回答问题.....
2025-01-08 07:49:15
推荐回答(2个)
回答1:

利用机械能守恒定律。要先求出系统的关于上端转动轴的转动惯量。
长为L,质量m的均质杆,质量线密度m/L,
I1=∫(0,L)(m/L)x²dx
=(m/3L)[x³](0,L)
=mL²/3
质量为M,半径为R,的圆盘,质量面密度M/πR²,固定在杆端:根据平行轴定理,
I2=圆盘对圆心轴的惯性矩+M(L+R)²
=M/πR²∫(0,R)2πr.r²dr+M(L+R)²
=2M/R²∫(0,R)r³dr+M(L+R)²
=M/2R²[r^4](0,R)+M(L+R)²
=MR²/2+M(L+R)²
I=I1+I2=mL²/3+MR²/2+M(L+R)²
以θ=0时的势能为0点,θ角时的势能
=mg(L/2-L/2.cosθ)+M[L+R-(L+R)cosθ]
=(1-cosθ)[mgL/2+M(L+R)]
等于θ=0时的转动动能:
(1/2)Iω²=(1-cosθ)[mgL/2+M(L+R)]
ω=√{2(1-cosθ)[mgL/2+M(L+R)]/I}
=√{2(1-cosθ)[mgL/2+M(L+R)]/[mL²/3+MR²/2+M(L+R)²]}

回答2:

瞎回答,你题目中涉及的图都没截出来,还瞎回答
整个系统对转轴的转动惯量会不会求?
机械能守恒定律求动能,
根据转动动能的定义求角速度