(Ⅰ)由正方形数的特点知an=n2,
由二项式定理的性质,杨辉三角形第n行n个数的和为:
Sn
=C
+
+C
=2n-1,
C
∴Tn=S1+S2+…+Sn
=1+2+22+…+2n-1
=2n-1.
(Ⅱ)a2=4,T2=22?1=3,∴a2>T2.
a3=9,T3=23?1=7,∴a3>T3.
a4=16,T4=24?1=15,∴a4>T4.
a5=25,T5=25?1=31,∴a5<T5.
∴2≤n≤4时,an>Tn.
猜想2≤n≤4时,an>Tn.n≥5时,an<Tn.
证明:2≤n≤4时,an>Tn,已证明.
下面用数学归纳法证明n≥5时,an<Tn.
①当n=5时,a5=25,T5=25?1=31,∴a5<T5.成立.
②假设n=k(k≥5,k∈N*)时,猜想成立,即ak<2k,∴k2<2k-1.
则Tk+1=2k+1?1=2?2k?1
=2(2k-1)+1
>2k2+1=k2+k2+1
>k2+2k+1=(k+1)2,
∴n=k+1时,猜想也成立.
由①②知n≥5时,an<Tn.