证明:(1)∵DE∥BC,CF∥AB,
∴四边形DBCF为平行四边形,
∴DF=BC,
∵D为边AB的中点,DE∥BC,
∴DE=
1
2
BC,
∴EF=DF-DE=BC-
1
2
CB=
1
2
CB,
∴DE=EF;
(2)∵四边形DBCF为平行四边形,
∴DB∥CF,
∴∠ADG=∠G,
∵∠ACB=90°,D为边AB的中点,
∴CD=DB=AD,
∴∠B=∠DCB,∠A=∠DCA,
∵DG⊥DC,
∴∠DCA+∠1=90°,
∵∠DCB+∠DCA=90°,
∴∠1=∠DCB=∠B,
∵∠A+∠ADG=∠1,
∴∠A+∠G=∠B.