先求一阶导数,然后要求这个一阶导数的导数再与x'(t)的商,y"(x)即d2y/dx2, 是同一个东西.
这里考察参数方程确定的函数得求导问题。对于dy/dx=(dy/dt)/(dx/dt)这是一阶导的求导公式。二阶导数也有相应得公式,详细的过程参考下图
y'=dy/dx=(dy/dt)/(dx/dt)
d²y/dx²=dy'/dx=(dy'/dt)/(dx/dt)
dy/dt=3asin²tcost
dx/dt=-3acos²tsint
y'=-sint/cost=-tant
dy'/dt=-1/cos²t
d²y/dx²=1/(3acos²tcos²tsint)
x = a(cost)^3, y = a(sint)^3
dy/dx = (dy/dt)/(dx/dt) = 3a(sint)^2cost/[3a(cost)^2sint] = tant
d^2y/dx^2 = d(dy/dx)/dx = [d(dy/dx)/dt]/(dx/dt) = (sect)^2/[3a(cost)^2sint]
= 1/[3sint(cost)^4]