如何将mysql数据导入hadoop

2024-12-23 00:19:30
推荐回答(3个)
回答1:

完成sqoop的安装后,可以这样测试是否可以连接到mysql(注意:mysql的jar包要放到 SQOOP_HOME/lib 下):

sqoop list-databases --connect jdbc:mysql://192.168.1.109:3306/ --username root --password 19891231

结果如下

即说明sqoop已经可以正常使用了。

下面,要将mysql中的数据导入到hadoop中。

我准备的是一个300万条数据的身份证数据表:

先启动hive(使用命令行:hive 即可启动)

然后使用sqoop导入数据到hive:

sqoop import --connect jdbc:mysql://192.168.1.109:3306/hadoop --username root --password 19891231 --table test_sfz --hive-import

sqoop 会启动job来完成导入工作。

完成导入用了2分20秒,还是不错的。

在hive中可以看到刚刚导入的数据表:

我们来一句sql测试一下数据:

select * from test_sfz where id < 10;

可以看到,hive完成这个任务用了将近25秒,确实是挺慢的(在mysql中几乎是不费时间),但是要考虑到hive是创建了job在hadoop中跑,时间当然多。

接下来,我们会对这些数据进行复杂查询的测试:

我机子的配置如下:

hadoop 是运行在虚拟机上的伪分布式,虚拟机OS是ubuntu12.04 64位,配置如下:

TEST 1 计算平均年龄

测试数据:300.8 W

1. 计算广东的平均年龄

mysql:select (sum(year(NOW()) - SUBSTRING(borth,1,4))/count(*)) as ageAvge from test_sfz where address like '广东%';

用时: 0.877s

hive:select (sum(year('2014-10-01') - SUBSTRING(borth,1,4))/count(*)) as ageAvge from test_sfz where address like '广东%';

用时:25.012s

2. 对每个城市的的平均年龄进行从高到低的排序

mysql:select
address, (sum(year(NOW()) - SUBSTRING(borth,1,4))/count(*)) as ageAvge
from test_sfz GROUP BY address order by ageAvge desc;

用时:2.949s

hive:select
address, (sum(year('2014-10-01') - SUBSTRING(borth,1,4))/count(*)) as
ageAvge from test_sfz GROUP BY address order by ageAvge desc;

用时:51.29s

可以看到,在耗时上面,hive的增长速度较mysql慢。

TEST 2

测试数据:1200W

mysql 引擎: MyISAM(为了加快查询速度)

导入到hive:

1. 计算广东的平均年龄

mysql:select (sum(year(NOW()) - SUBSTRING(borth,1,4))/count(*)) as ageAvge from test_sfz2 where address like '广东%';

用时: 5.642s

hive:select (sum(year('2014-10-01') - SUBSTRING(borth,1,4))/count(*)) as ageAvge from test_sfz2 where address like '广东%';

用时:168.259s

2. 对每个城市的的平均年龄进行从高到低的排序

mysql:select
address, (sum(year(NOW()) - SUBSTRING(borth,1,4))/count(*)) as ageAvge
from test_sfz2 GROUP BY address order by ageAvge desc;

用时:11.964s

hive:select
address, (sum(year('2014-10-01') - SUBSTRING(borth,1,4))/count(*)) as
ageAvge from test_sfz2 GROUP BY address order by ageAvge desc;

用时:311.714s

回答2:

用sqoop

sqoop job --create myjob -- import --connect jdbc:mysql://192.168.80.1:3306/hive --username root --password root --table tbls --fields-terminated-by '\t' --null-string '' --m 1 --check-column 'TBL_ID' --incremental append

回答3:

可以导入,太大,就不要用记事本或者其它编辑器打开了,
查询分析器--连接数据库--文件--打开--.sql文件--F5执行

不过你把数据导出为SQL文件,而且200多M,真的是。。。。

为何不压缩后,直接拷库文件,或者直接备份导出呢。