f(x)=(sinwx+coswx)^2+2(coswx)^2(w>0)
=1+sin2wx+1+cos2wx =√2sin(2wx+π/4)+2因为f(x)的最小正周期为2π/3,所以 T=2π/w,代入T和w 解得 w=3/2,所以f(x)=√2sin(3x+π/4)+2将函数y=f(x)的图像向右平移π/2个单词长度得到y=g(x),则 g(x)=√2sin [3(x-π/2)+π/4]+2 =√2sin(3x-5π/4)+2当 - π/2+2kπ<= 3x-5π/4<= π/2+2kπ,k属于z解得 π/4+2kπ/3<= x<=7π/6+2kπ/3,k属于z所以y=g(x)的单调增区间为[π/4+2kπ/3,7π/6+2kπ/3],k属于z