证明:A(n+1)=Sn+3n+1,则An=S(n-1)+3n-2
两式想减得A(n+1)-An=Sn+3n+1-(S(n-1)+3n-2)=An+3
即A(n+1)+3=2(An+3)
即(A(n+1)+3)/(An+3)=2
又a1=1 A1+3=4
即{An+3}是首项为4,公比为2的等比数列
An+1=Sn+3n+1
An=S(n-1)+3(n-1)+1
两式相减得到:
A(n+1)-An=An+3
A(n+1)=2An+3
A(n+1)+3=2(An+3)
【A(n+1)+3】/【(An+3)】=2
得证