三重积分 计算三重积分∫∫∫xdxdydz,其中Ω为三个坐标面及平面x+2y+z=1所围成的闭区域?

如何用截面法计算
2025-01-24 11:31:27
推荐回答(1个)
回答1:

解:原式=∫<0,1>xdx∫<0,(1-x)/2>dy∫<0,1-x-2y>dz
=∫<0,1>xdx∫<0,(1-x)/2>(1-x-2y)dy
=∫<0,1>x[(1-x)²/4]dx
=1/4∫<0,1>(x-2x²+x³)dx
=(1/2-2/3+1/4)/4
=1/48。