线性代数中的det是是将一个行列式计算出来的意思。
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。
扩展资料:
性质
①行列式A中某行(或列)用同一数k乘,其结果等于kA。
②行列式A等于其转置行列式AT(AT的第i行为A的第i列)。
③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
④行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。
参考资料来源:百度百科-行列式
线性代数中的det是是将一个行列式计算出来的意思。
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。
扩展资料:
线性代数是一个成功的理论,其方法已经被应用于数学的其他分支。
1、模论就是将线性代数中的标量的域用环替代进行研究。
2、多线性代数将映射的“多变量”问题线性化为每个不同变量的问题,从而产生了张量的概念。
3、在算子的光谱理论中,通过使用数学分析,可以控制无限维矩阵。
A矩阵的行列式(determinant),用符号det(A)表示。
行列式在数学中,是由解线性方程组产生的一种算式其定义域为nxn的矩阵 A,取值为一个标量,写作det(A)或 | A | 。行列式可以看做是有向面积或体积。
扩展资料
1、当矩阵A的列数(column)等于矩阵B的行数(row)时,A与B可以相乘。
2、矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。
3、乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和。
基本性质
乘法结合律: (AB)C=A(BC)
乘法左分配律:(A+B)C=AC+BC
乘法右分配律:C(A+B)=CA+CB
对数乘的结合性k(AB)=(kA)B=A(kB)
转置 (AB)T=BTAT
det是将一个行列式计算出来的意思,是一个数。书上可能是默认你是知道这个的,所以才没有提的。
指的是行列式的意思,就一个具体的数值