一个等价无穷小式子中的三个位置上的x用同一个函数替换。
e^x-1~x
(x→0),
e^(x^2)-1~x^2
(x→0)。
1-cosx~1/2x^2
(x→0),1-cos(x^2)~1/2x^4
(x→0)。
1、e^x-1~x
(x→0)
2、
e^(x^2)-1~x^2
(x→0)
3、1-cosx~1/2x^2
(x→0)
4、1-cos(x^2)~1/2x^4
(x→0)
5、sinx~x
(x→0)
6、tanx~x
(x→0)
7、arcsinx~x
(x→0)
8、arctanx~x
(x→0)
9、1-cosx~1/2x^2
(x→0)
10、a^x-1~xlna
(x→0)
11、e^x-1~x
(x→0)
12、ln(1+x)~x
(x→0)
13、(1+Bx)^a-1~aBx
(x→0)
14、[(1+x)^1/n]-1~1/nx
(x→0)
15、loga(1+x)~x/lna(x→0)
拓展资料;
极限的求法有很多中:
1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值
2、利用恒等变形消去零因子(针对于0/0型)
3、利用无穷大与无穷小的关系求极限
4、利用无穷小的性质求极限
5、利用等价无穷小替换求极限,可以将原式化简计算
6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限
7、利用两个重要极限公式求极限
8、利用左、右极限求极限,(常是针对求在一个间断点处的极限值)
9、洛必达法则求极限
最低0.27元/天开通百度文库会员,可在文库查看完整内容>
原发布者:冰居室主人
2、求极限公式 (2) (3) (4) (5) (6)(7)(8)3、方法(1)分母极限为0时,分解因式,凑公式(2)当时,除以最高指数的Xn(3)等价无穷小量代换sinx~x; tan~x; arctanx~x; arcsinx~x; 导数:(1)(C)'=0(2)(xμ)'=μxμ-1 (3)(4) (5)(ax)'=axlna(a>0,a≠1)(6)(ex)'=ex (7)(8) (9)(sinx)'=cosx(10)(cosx)'=-sinx (11)(12) (13)(secx)'=secx·tanx(14)(cscx)'=-cscx·cotx (15)(16) (17)(18) 2.导数的四则运算法则 设u=u(x),v=v(x)均为x的可导函数,则有 (1)(u±v)'=u'±v' (2)(u·v)'=u'·v+u·v' (3)(cu)'=c·u' (4) (5) (6)(u·v·w)'=u'·v·w+u·v'·w+u·v·w'