请问图中的两个式子是怎么合并的,求计算过程

f和k一样是个系数
2025-01-07 14:30:02
推荐回答(1个)
回答1:

只是等式变换罢了
结合两式,得到
k1(x-x1)=k2y (3)
两边对t求导,得到:
k1(dx/dt-dx1/dt)=k2dy/dt
或者
k1dx/dt=k1dx1/dt+k2dy/dt (4)
结合原先第二式子
f dx1/dt- f dy/dt =k2y
得到
dx1/dt = dy/dt + k2 y/f (5)
(5)代入 (4)再化简,就得到
k1dx/dt = k1(dy/dt+k2y/f)+k2 dy/dt
(k1+k2) dy/dt + k1k2/f * y = k1 dx/dt
dy/dt + k1k2/[(k1+k2)f] *y = k1/(k1+k2) dx/dt