如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC

2024-12-12 20:43:53
推荐回答(1个)
回答1:

(1)证明:连接OD,
∵OA=OD,
∴∠OAD=∠ODA,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠ODA=∠CAD,
∴OD AC,
∵∠C=90°,
∴∠ODC=90°,
∴OD⊥BC,
∵OD为半径,
∴BC是⊙O切线;

(2) 在Rt△ADC中,AC=8,CD=6,
由勾股定理得:AD=10.
连接DE,
∵AE为直径,
∴∠EDA=∠C=90°,
∵∠CAD=∠EAD,
∴△DCA △EDA,
AE
AD
=
AD
AC

AE
10
=
10
8

AE=12.5.