如图所示,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)经过A(-1,0)、B(3,0)两点,抛物线与y轴交

2024-12-29 23:32:39
推荐回答(1个)
回答1:

(1)∵抛物线y=ax2+bx+3(a≠0)经过A(-1,0)、B(3,0)两点
∴把(-1,0)B(3,0)代入抛物线得:a=-1,b=2,
∴抛物线解析式为:y=-x2+2x+3.
∴顶点D的坐标为(1,4);

(2)设直线BD解析式为:y=kx+b(k≠0),把B、D两点坐标代入,

3k+b=0
k+b=4

解得k=-2,b=6,
直线BD解析式为y=-2x+6,
S=
1
2
PE?OE,
S=
1
2
PE?OE=
1
2
xy=
1
2
x(-2x+6)=-x2+3x,
∵顶点D的坐标为(1,4),B(3,0)
∴1<x<3,
∴S=-x2+3x(1<x<3),
S=-(x2-3x+
9
4
)+
9
4

=-(x-
3
2
2+
9
4

∴当x=
3
2
时,S取得最大值,最大值为
9
4


(3)当S取得最大值,x=
3
2
,y=3,
∴P(
3
2
,3),
∴四边形PEOF是矩形.
作点P关于直线EF的对称点P′,连接P′E,P′F.
过P′作P′H⊥y轴于H,P′F交y轴于点M,
设MC=m,则MF=m,P′M=3-m,P′E=
3
2

在Rt△P′MC中,由勾股定理,
3
2
2+(3-m)2=m2
解得m=
15
8

∵CM?P′H=P′M?P′E,
∴P′H=
9
10

由△EHP′∽△EP′M,
可得
EH
EP′
EP′
EM

EH
3
2
=
3
2
15
8

解得:EH=
6
5

∴OH=3-
6
5
9
5

∴P′坐标(-
9
10
9
5
).
不在抛物线上.