(2012?河南)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3.点D是BC边上的一动点(不与点B、C重合)

2025-01-05 00:36:44
推荐回答(1个)
回答1:

解答:解:根据题意得:∠EFB=∠B=30°,DF=BD,EF=EB,
∵DE⊥BC,
∴∠FED=90°-∠EFD=60°,∠BEF=2∠FED=120°,
∴∠AEF=180°-∠BEF=60°,
∵在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,
∴AC=BC?tan∠B=3×

3
3
=
3
,∠BAC=60°,
如图①若∠AFE=90°,
∵在Rt△ABC中,∠ACB=90°,
∴∠EFD+∠AFC=∠FAC+∠AFC=90°,
∴∠FAC=∠EFD=30°,
∴CF=AC?tan∠FAC=
3
×
3
3
=1,
∴BD=DF=
BC?CF
2
=1;
如图②若∠EAF=90°,
则∠FAC=90°-∠BAC=30°,
∴CF=AC?tan∠FAC=
3
×
3
3
=1,
∴BD=DF=
BC+CF
2
=2,
∴△AEF为直角三角形时,BD的长为:1或2.