你说的是:
(1)F(x)= ∫[0,x]xf(t)dt = x∫[0,x]f(t)dt,
F'(x)= ∫[0,x]f(t)dt+xf(x).
(2)G(x) = ∫[0,x]tf(2x-t+1)dt,
先做变量替换u =2x-t+1,则t = 2x-u+1,dt = -du
G(x) =∫[0,x]tf(2x-t+1)dt
= ∫[2x+1,x+1](2x-u+1)f(u)(-1)du
= ∫[x+1,2x+1](2x-u+1)f(u)du
= 2x∫[x+1,2x+1]f(u)du - ∫[x+1,2x+1]uf(u)du + ∫[x+1,2x+1]f(u)du,
于是,
G'(x) = (d/dx){2x∫[x+1,2x+1]f(u)du - ∫[x+1,2x+1]uf(u)du + ∫[x+1,2x+1]f(u)du}
= ……
(用求导法则和积分上限函数的求导法来求解,这里不好写,留给你了)