设 是一个集合, 是一些 的子集构成的族,则( , )被称为一个拓扑空间,如果下面的性质成立:1. 空集和属于 ,2. 中任意多个元素的并仍属于 ,3. 中有限个元素的交仍属于 。这时, 中的元素成为点(point), 中的元素成为开集(open set)。我们也称 是 上的一个拓扑。