⑴f'(x)=(lnx-1)/ln²x+a
当x>1时,f'(x)恒大于0
令g(x)=(lnx-1)/ln²x+a x>1
g'(x)=[2-lnx]/x·ln³x
驻点:x₀=e²
1
∴g(x₀)是最小值
∴g(x)≥(2-1)/4+a
∴当a>-1/4 时,g(x)恒大于0
即实数a的取值范围是a>-1/4
⑵a=2
驻点:(lnx-1)/ln²x+2=0
2ln²x+lnx-1=0
lnx=(-1±3)/4
∵x>1→lnx>0,
∴lnx=1/2
x₀=√e>1
∴f(x)的最小值=f(√e)=4√e
第一问,a≤-1/4
第二问,极小值4✔e
详见附图: