设f(x)=∫(x→1)e∧(x⼀y)dy,求∫(0→1)f(x)dx,急求大神来帮忙解答下这道题

2024-12-30 15:52:35
推荐回答(2个)
回答1:

f(x)=∫(x->1) e^(x/y) dy
f'(x) = -e^(x/x) = -e
-------

∫(0->1) f(x)dx
=[xf(x)] |(0->1) -∫(0->1) xf'(x) dx
=-∫(0->1) xf'(x) dx
=(1/2)e. [x^2] |(0->1)
= (1/2) e

回答2:

∫(0→1)f(x)dx=∫(0→1)∫(x→1)e∧(x/y)dydx=∫(0→1)∫(0→y)e∧(x/y)dxdy=∫(0→1)yedy=e/2