f(x)=∫(x->1) e^(x/y) dyf'(x) = -e^(x/x) = -e-------∫(0->1) f(x)dx=[xf(x)] |(0->1) -∫(0->1) xf'(x) dx=-∫(0->1) xf'(x) dx=(1/2)e. [x^2] |(0->1)= (1/2) e
∫(0→1)f(x)dx=∫(0→1)∫(x→1)e∧(x/y)dydx=∫(0→1)∫(0→y)e∧(x/y)dxdy=∫(0→1)yedy=e/2