996的根号3次方=(1000*(1-4/1000) )的三次方=10*(1-4/3000)=9.986
65的根号6次方=(64*(1+1/64) )的根号6次方=2*(1+1/6*64)=2.005
令函数y=√x,注意120=121+(-1),已知√bai121=11,求出函数y在x=121处取δx=-1时的δy就能换算出x=120的值。
根据微分的定义dy=dx/[2√x]
代入x=121,δx=-1得到:
δy≈dy=-1/22
√120≈√121-1/22=11-1/22=10.9545
扩展资料:
根据要求,要省略的尾数的最高位上的数字小于或等于4的,就直接把尾数舍去;如果尾数的最高位数大于或等于5,把尾数舍去后并向它的前一位进“1”,即满五进一。这种取近似数的方法叫做四舍五入法。
如:把3.15482分别保留一位、两位、三位小数。
保留一位小数:3.15482≈3.2
保留两位小数:3.15482≈3.15
保留三位小数:3.15482≈3.155
参考资料来源:百度百科-近似值
这类题,可以这样解:先求关于f(x)的导数,然后取一个x0,能够开n次方的,再用差值加上f(x)的导数就行了。
令f(x)=x^(1/3),则
f'(x)=(1/3) * x^(1/3-1)
取x0=1000,(注意x0的取值,要接近根号内的数,并可以被开方),那么差值
△x=1000-996=4,则
f'(x0)=(1/3) * 1000^(-2/3)=1/300
996^(1/3)≈1000^(1/3) - f'(x0) * 4
=10-1/300 *4
=749/75
类似该题,有专门一个公式的,利用它来求函数的近似值
见人教版 数学 第三册(选修II)P.131
f(x0+△x)≈f(x0)+f'(x0)*△x
996的根号3次方=(1000*(1-4/1000) )的三次方=10*(1-4/3000)=9.986
65的根号6次方=(64*(1+1/64) )的根号6次方=2*(1+1/6*64)=2.005