证明:
过B作BN//AC交EM延长线于N点
∴CF=BN ∠CFM=∠N
又AD//ME AD平分∠BAC,∠E=∠DAB
∴∠CFM=∠DAC=∠E
∴∠E=∠N
∴ BE=BN=CF
∵∠EFA=∠CFM
∴∠E=∠EFA
∴ AE=AF
∴ AB+AC=AB+(AF+FC)=AB+AE+FC=BE+FC
∴ BE=CF=1/2(AB+AC)
证明:在EM延长线上取点H,使MH=MF,过点C作CG∥ME交BE的延长线于点G,连接BF、CH∵AD平分∠BAC∴∠BAD=∠CAD∵MN∥AD∴∠AEF=∠BAD,AFE=∠CAD∴∠AEF=∠AFE∵M是BC的中点∴BM=CM∵MH=MF∴平行四边形FBHC∴BH∥AC,BH=CF∴∠BHE=∠AFE∴∠BHE=∠AEF∴BH=BE∴BE=CF∵CG∥AD∴∠G=∠AEF,∠ACG=∠AFE∴∠G=∠ACG∴AG=AC∴BG=AB+AG=AB+AC∵MN∥AD,CG∥AD∴CG∥MN又∵M是BC的中点∴中位线ME∴BE=BG/2=(AB+BC)/2∴BE=CF