解:(1)连接OA并延长,交BC于点D,
∵AB=AC,
∴
=AB
,AC
∴AD⊥BC,
∵AP∥BC,
∴AP⊥OA,
则AP是圆O的切线;
(2)∵AB=AC,AD⊥BC,
∴BD=CD=
BC=3,1 2
在Rt△OBD中,OB=5,BD=3,
根据勾股定理得:OD=
=4,
OB2?BD2
∵AP∥BC,
∴∠P=∠OBD,∠PAO=∠ODB,
∴△AOP∽△DOB,
∴
=AP BD
,即OA OD
=AP 3
,5 4
则AP=
.15 4