a^2+b^2+c^2=ab+bc+ca
两边乘以2得2a^2+2b^2+2c^2=2ab+2bc+2ca
移项并配方得
(a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2bc+c^2)=0
(a-b)^2+(b-c)^2+(a-c)^2=0
则a=b=c
又a+2b+3c=12
所以a=b=c=2
a+b^2+c^3=2+4+8=14
a的平方+b的平方+c的平方=ab+bc+ca.
(a-b)^2+(b-c)^2+(a-c)^2=0;得a=b=c;
a+2b+3c=12,6a=12,a=2;
a+b的平方+c的3次方=2+4+8=14