证明:为了方便起见,设∠BAD=∠1、∠ACF=∠2、∠DEB=∠3、∠EAB=∠4、∠DCG=∠5、...如图。
因为:BD=AF,AB=AC,∠ABD=∠CAF=60°
所以:三角形ABD和三角形CAF全等。
所以:∠1=∠2,同时FC=AD.
由于:∠ABD=∠AED=60°
所以:AEBD四点共圆。
所以:∠1=∠3
因此有:∠1=∠2=∠3
由共圆还得:∠10=∠11=∠ABD=∠FAC=60°
因此:∠7=60°+∠3、∠6=60°+∠1、∠8=60°+∠2
所以:由∠7=∠8得ED平行FC
由于FC=AD=ED
所以:四边形EDCF是平行四边形。(一组对边平行且相等的四边形是平行四边形)
图里面有详细过程,不清楚可以看下面哦!
解:证明如下:
因为矩形ABCD
所以∠BAD为90度
因为∠BAE为30度
所以∠EAD为60度
因为AE垂直于BD
所以∠ADE为30度
因为AD//BC
所以∠DBC为30度
因为∠BCD为90度
所以BD=2DC
由勾股定理,
DC^2+BC^2=BD^2
带入BD得DC=(2√3)/3(三分之二倍根号三)
作EF、EG如图,
使其分别为RT⊿ABE和⊿ECD的高
因为AB=DC
所以AB=(2√3)/3
因为∠BAE为30度
所以AB=2BE
BE=(√3)/3
由勾股定理得
AE为1
因为EF垂直AB
所以AE=2EF
所以EF为1/2
应为FG=2
所以EG=FG-EF=3/2
因为DC为(2√3)/3
EG垂直DC
所以S⊿ECD=(2√3)/3×3/2×1/2=√3/2
图
因为<1+
将(2)代入(1)90+
又因为AC=BD
所以CE=BD
∵等边三角形ABC
∴AE=AD,∠DAE=60°
同理,AB=AC,∠BAC=60°
∴∠DAE-∠BAD=∠BAC-∠BAD
即∠BAE=∠CAD
∴△ABE≌△ACD
∴BE=CD=BF,∠ABE=∠ACD=60°
∴等边三角形BEF
∴EF=BE=CD,∠BFE=60°
∴∠BFE=∠FBC
∴EF∥CD
∴平行四边形CDEF