x1/2+x-1/2=3两边平方得
x+1/x=7,
x3/2+x-3/2=(x1/2+x-1/2)(x+1/x-1)
=3×6=18,
所以(x3/2+x-3/2+2)/ (x-1+x+3)
=20×10=200.
设X½=t
t+1/t=3
t²+1=3t
t²-3t+1=0
t=(3±√5)/2
((x½)³+ (x-½)³+2)/(x-¹+x+3)
=(t³+1/t³+2)/(t²+1/t²+3)
=[(t+1/t)³-3(t+1/t)+2]/[(t+1/t)²-2+3]
=(3³-3×3+2)/(3²-2+3)
=20/10
=2