初三数学应用题一道,用一元二次方程解!

2024-12-16 02:05:33
推荐回答(3个)
回答1:

先给出初级的答案:设宽为X,长为Y。利用那个旧墙为要求矩形一个宽边,从而节省材料扩大面积。长和宽满足同时三个条件就行
1。13.942。6.973。2Y+X=100
举一例:X宽为50,Y长为25。此时面积为1250.
下边是高级的答案:设宽为(50+X)“注意X可为负数”,长为Y。利用那个旧墙为要求矩形“一个宽边的一部分”,从而节省材料扩大面积。X和Y要满足下列条件:1。(50+X)*Y>600
2。(50+X)+2Y=100“此时X小于等于0”或 50+2X+2Y=100“此时X大于0”
整理得,X和Y要满足下列条件:

1。当X小于等于0时,-36.06
2。当X大于0时,0另,使面积最大的方案为:宽为50(利用旧墙为另一宽),长为25,面积1250.

回答2:

分析:本题符合要求的设计方案不只一个,可以有多个设计方案。因此这是一个开放型的问题。
略解:(1):矩形不靠旧墙。
设矩形仓库的宽为x米,则长为(50-x)米。
由题意的:x(50-x)=600 解得:x=20或 x=30
检验后知x=20符合要求。
因为正方形也是矩形,且周长相等时,正方形的面积更大,所以设计成边长为25米的正方形仓库也符合要求。此时面积为625平方米。
(2):矩形一边靠旧墙。
设矩形的宽为x米,则x(100-2x)=600
解得:x=6.97 或43.03 ,检验知 符合要求.
同时,为了充分利用旧墙,设计为长50米,宽25米的矩形仓库也符合要求。此时面积为1250平方米。

回答3:

设长为x,宽为100/2-x。(单位:m)
x(50-x)大于等于600
解得20小于等于x小于等于30
所以宽也为20-30(m)