解答:(1)证明:连接AD、CE并相交于O点,
连接OF,则OF为平面CEC1与平面ADF的相交线,
在△ABC中,D、E分别是BC、AB的中点
则O点为△ABC的重心,即 OC=2OE
=OC CE
,3 2
又CC1=AA1=3,CF=2,
=CF CC1
,2 3
在△ECC1、△COF中,
=CF CC1
,OC CE
∴OF∥C1E,
∵OF?平面ADF,C1E不包含于平面ADF,
∴C1E∥平面ADF.
(2)∵平面BCC1B1∩平面ADF=DF,
平面BCC1B1∩平面ACM=CM,
∵BC=CF=2,D是棱BC的中点,BM=1,
∠CBM=∠FCD=90°,
∴△CBM≌△FCD,∴∠BCM=∠CFD,
∴DF⊥CM,
∴平面ACM⊥平面ADF.