如图,在直三棱柱ABC-A1B1C1中,D、E分别是棱BC、AB的中点,点F在棱CC1上,已知AB=AC,AA1=3,BC=CF=2(1

2025-04-01 20:05:10
推荐回答(1个)
回答1:

解答:(1)证明:连接AD、CE并相交于O点,
连接OF,则OF为平面CEC1与平面ADF的相交线,
在△ABC中,D、E分别是BC、AB的中点
则O点为△ABC的重心,即 OC=2OE

OC
CE
=
3
2

又CC1=AA1=3,CF=2,
CF
CC1
=
2
3

在△ECC1、△COF中,
CF
CC1
=
OC
CE

∴OF∥C1E,
∵OF?平面ADF,C1E不包含于平面ADF,
∴C1E∥平面ADF.
(2)∵平面BCC1B1∩平面ADF=DF,
平面BCC1B1∩平面ACM=CM,
∵BC=CF=2,D是棱BC的中点,BM=1,
∠CBM=∠FCD=90°,
∴△CBM≌△FCD,∴∠BCM=∠CFD,
∴DF⊥CM,
∴平面ACM⊥平面ADF.