连接BD
等腰梯形对角线相等,所以BD=AC
AD=BE,AD‖BE
所以四边形ADBE是平行四边形
AE=BD
BD=AC
所以AE=AC
解:(1)连接BD,
∵AD∥BC,EB=AD,
∴四边形ADBE为平行四边形,
∴AE=BD,
∵梯形ABCD是等腰梯形,
∴AC=BD,
∴AE=AC;
(2)∵AD∥BC,AC平分∠BCD,
∴∠ACB=∠DCA=∠DAC,
∴AD=CD=AB,
∵梯形ABCD是等腰梯形,
∴∠ABC=∠BCD=2∠ACB,
∴∠ACB+∠ABC=3∠ACB=90°,
∴∠ACB=30°,
∴BC=2AB=2AD.