(一) 如图在三角形ABC中,点D,E分别在AB,AC上,设CD与BE相交于点O,A=60°,角DCB=角EBC=1/2∠A。 (

2024-12-30 02:54:42
推荐回答(4个)
回答1:

二:

如图,CD延长线上取F,使∠BFC=∠CEB,则⊿BCE≌⊿CBF(AAS),BF=CE,

∠DOE+∠A=180°.∠ODA+∠OEA=180°.∠BDC+∠BEC=180°,

∠BDF=180°-∠BDC=∠BEC=∠BFC,⊿BDF等腰。BD=BF=CE.

回答2:

证明1:∵∠DBC=∠EBC=30°
∴∠DOB=∠EOC=60°,∠DOE=120°
2:∵∠A+∠DOE=180°
∴∠ADO+∠AEO=180°
∵∠BDC+∠ADO=180°,∠BEC+∠AEO=180°
∴∠BDC=∠CED
⊿BDO⊿CEO中
∠BDO=∠CEO,∠DOB=∠EOC,OB=OC
⊿BDO≌CEO
∴BD=CE
证明二:同理可证:∠A≠60°的锐角时,BD=CE

回答3:

(2)在OE上截取OF=OD,连接CF
∵OD=OF,∠BOD=∠COF,OB=OC
∴△OBD≡△OCF
∴BD=CF
∵∠AEB+∠BEC=180°
而∠A+∠DOE=180°
∴∠AEO+∠ADO=180°
∴∠OEC=∠ADO
∵∠ADC=∠ABC+∠DCB
而∠EFC=∠EBC+∠BCF
∴∠CEF=∠CFE
∴CE=CF=BD
∴四边形BCED等对边四边形。

回答4:

这是错的