数据分析师的职位有哪些?

2024-12-29 16:03:53
推荐回答(5个)
回答1:

数据产业的每个环节都需要依靠专业人员完成,因此,必须培养和造就一支掌握数据技术、懂管理、有数据应用经验的数据建设专业队伍。目前数据相关人才的欠缺严重阻碍数据市场发展。


数据分析的相关职位需要的是复合型人才,能够对数学、统计学、数据分析、机器学习和自然语言处理等多方面知识综合掌控。未来,数据分析将会出现约100万以上的人才缺口,在各个行业,数据分析中高端人才都会成为炙手可热的人才,涵盖了大数据的数据开发工程师、数据分析师、数据架构师、数据后台开发工程师、算法工程师等多个方向。


人们每时每刻都在产生着数据,而这些数据改变着生活。大数据产业已逐步从概念走向落地,90%企业都在使用大数据,而大数据高端软件类人才供应远不能满足时代的发展。有报告指出,数据分析师已成当下中国互联网行业需求旺盛的六类人才职位之一,并且未来中国基础性数据分析人才缺口将达到 1400 万。


就目前中国数据人才的市场来看,比较紧缺的数据分析岗位主要为数据专员(统计员)、数据运营、数据分析师、数据分析工程师、数据挖掘工程师、数据策略师(数据产品经理)、算法工程师等职位岗位。


关于数据分析师岗位的相关问题,建议找一家专业的机构了解一下。例如CDA数据认证中心就不错。CDA已进行500多期线上线下数据分析及大数据培训课程,培养学员10万+人次;已在全国70+城市举办15届CDA数据分析师认证考试,报考考生数万人。

回答2:

数据分析师的职位有很多细分和要求,数据分析职位整体上分为两大类:

一、数据分析师:
1、专业能力成长路径:助理数据分析师、数据分析师、资深数据分析师、高级数据分析师。
2、行政职位晋升路径:数据分析专员、数据分析主管、数据分析经理、数据分析总监。主要专业技能要求:数据库知识(SQL)、基本的统计分析知识、熟练掌握Excel,了解SPSS/SAS,良好的PPT展示能力。
二、数据分析工程师:算法工程师、建模工程师。
想要考取数据分析师,推荐选择十方融海教育机构。十方融海自主研发的交互式智慧教学系统,拥有独家专利技术,开创了边学边实操的新型教学模式,解决了教学与实操不同频的难题。通过系统,学员无需安装软件,打开浏览器即可进入实操学习。

想要学习数据分析推荐选择十方融海。十方融海助力用户在数字时代实现兴趣与技能双向提升,进而实现职业自由。推出了声音研究、写作书苑、心理沟通等通用技能课程,以及影视后期制作、音乐制作、数据分析等数字技能课程。旗下梨花声音研修院、兰心书院已成为垂直领域头部品牌。

回答3:

数据分析职位整体上分为两大类:

数据分析师:
- 专业能力成长路径:助理数据分析师-数据分析师-资深数据分析师-高级数据分析师
- 行政职位晋升路径:数据分析专员-数据分析主管-数据分析经理-数据分析总监
- 主要专业技能要求:数据库知识(SQL)、基本的统计分析知识、熟练掌握Excel,了解SPSS/SAS,良好的PPT展示能力。

数据分析工程师:
算法工程师、建模工程师。

回答4:

回答5:

1、数据跟踪员:机械拷贝看到的数据,很少处理数据
虽然这个工作的人还不能称作数据分析师,但是往往作这样工作的人还都自称是数据分析师,这样的人,只能通过系统看到有限的数据,并且很少去处理数据,甚至不理解数据的由来和含义,只是机械的把自己看到的数据拷贝出来,转发给相应的人。这类人发出来的数据,是否有意义,怎么解读,他自己是不知道的,只能期望收到数据的人了。
2、数据查询员/处理员:数据处理没问题,缺乏数据解读能力
这些人可以称为分析师了,他们已经对数据有一定的理解了,对于大部分数据,他们也知道数据的定义,并且可以通过监控系统或者原始的数据,处理得到这些数据。统计学的方法,这批人还是很精通的,统计学的工具,他们也是用起来得心应手,你让他们做一下因子分析,聚类肯定是没问题,各类检验也是用的炉火纯青。他们的不足是:1、如果不告诉他们命题,那么他们就不知道该应用什么样的方法去得到结论了。2、对于数据的处理没问题,但是却没有一个很好的数据解读能力。只能在统计学的角度上解释数据。
3、数据分析师:解读数据,定位问题提出答案
数据分析师这群人,对于数据的处理已经不是问题了,他们的重点已经转化到怎么样去解读数据了,同样的数据,在不同人的眼中有不一致的内容。好的数据分析师,是能通过数据找到问题,准确的定位问题,准确的找到问题产生的原因,为下一步的改进,找到机会点的人。往往科班出身的人,欠缺的不是在处理数据上,而是在解读数据上,至于将数据和产品结合到一起,则是其更缺少的能力了。
4、数据应用师:将数据还原到产品中,为产品所用
数据应用,这个词很少被提到。但是应用数据被提的很多,分析了大量的数据,除了能找到问题以外,还有很多数据可以还原到产品中,为产品所用。典型的是在电子商务的网站中,用户的购买数据,查看数据和操作的记录,往往是为其推荐新商品的好起点,而数据应用师就是要通过自己的分析,给相应的产品人员一个应该推荐什么产品,购买的可能性会最大的一个结论。国内能做到这个级别的数据人员还真是少的可怜,甚至大部分人员连数据的视图都搞不定,而真正意义上的能数据应用师,可以用数据让一个产品变得更加地简单高效。
5、数据规划师:走在产品前面,让数据有新的价值方向
数据规划师,不能说水平上比数据应用师高多少,而是另外一个让数据有价值的方向。往往在实际的应用中,数据都是有其生命周期的,用来分析、应用的数据也是,这点上,尤其是在互联网公司更加明显,一个版本的更新,可能导致之前的所有数据都一定程度的失效。数据规划师在一个产品设计之前,就已经分析到了,这个产品应该记录什么样的数据,这些数据能跟踪什么问题,哪些记录到的数据,应该可以用到数据中去,可以对产品产生什么样的价值。