基本不等式法:因为x^2+y^2≥2xy≥-(x^2+y^2),即昌行1-xy≥2xy≥-(1-xy)耐拿哗,所以1/3≥xy≥-1,所以x^2+y^2-xy=x^2+y^2+xy-2xy=1-2xy∈[1/3,3];换元法:由x^2+y^2+xy=1得(x+y/2)^2+(√3/2y)^2=1,设x+y/2=cosa,√3/2y=sina,解得x,y代敏肢入即可.