如何求函数的n阶导数

第三题
2024-12-14 06:08:45
推荐回答(3个)
回答1:

y ' = 2sinxcosx = sin2x

y '' = 2cos2x

y ''' = -4sin2x

y^(4) = -8cos2x

一般地,y^(n) = 2^(n-1) * sin[2x+(n-1)兀/2]

例如:

^^^y=lnx/x

y'=(1-lnx)/x^2=1/x^2-lnx/x^2

y"=-2/x^3-(1-2lnx)/x^3=-3/x^3+2lnx/x^3

记y(n)=(-1)^(n+1)*[ an- n!dulnx]/x^(n+1)

有zhiy(n+1)=(-1)^n*an (n+1)/x^(n+2)+(-1)^n* n![1- (n+1)lnx]/x^(n+2)

a(n+1)=(n+1)an+n!

a1=1,a2=3,a3=11,a4=50,a5=274

扩展资料:

对任意n阶导数的计算,由于 n 不是确定值,自然不可能通过逐阶求导的方法计算。此外,对于固定阶导数的计算,当其阶数较高时也不可能逐阶计算。

所谓n阶导数的计算实际就是要设法求出以n为参数的导函数表达式。求n阶导数的参数表达式并没有一般的方法,最常用的方法是,先按导数计算法求出若干阶导数,再设法找出其间的规律性,并导出n的参数关系式。

参考资料来源:百度百科-高阶导数

回答2:

一阶导数,n*(x+3)^(n-1)

二阶,n*(n-1)*(x+3)^(n-2)
N阶,n*n-1*.....*1,x的系数为0
得出答案为,n!

回答3:

2