siny+xe^y = 0 两边对 x 求导,得y'cosy + e^y + xy'e^y = 0 . x = 0, y = 0 代入得y' + 1 = 0, y' = -1, 曲线 y=y(x) 在 (0, 0) 点处的切线斜率为 -1
两边对x求导:y'cosy+e^y+xy'e^y=0代入(0,0)得:y'cos0+e^0+0=0y'=-1即在(0,0)处的切线斜率为-1
=-1
方法如下图所示,请认真查看,祝学习愉快,学业进步!
满意请釆纳!