n(n+1)=n^2+n
Sn=1×2+2×3+3×4+……+n(n+1)=1^2+1+2^2+2+3^2+3+……+n^2+n
=(1+2+3+……+n)+(1^2+2^2+3^2+……+n^2)
=n(n+1)/2+(1^2+2^2+3^2+……+n^2)
求1^2+2^2+3^2+……+n^2
2^3=(1+1)^3=1^3+3*1^2+3*1+1
3^3=(2+1)^3=2^3+3*2^2+2*2+1
…
(n+1)^3=n^3+3*n^2+3*n+1
将上边式子左右都加起来,2^3,3^3…,n^3左右都有,约去,剩下
(n+1)^3=3*(1^2+2^2…+n^2)+3*(1+2+…+n)+n
将1+2+…+n=n*(n+1)/2代入上式
1^2+2^2…+n^2= (n+1)^3/3- n*(n+1)/2-n
所以1×2+2×3+3×4+……+n×(n+1)=(n+1)^3/3 - n
Sn=1×2+2×3+3×4+……+n(n+1)=1^2+1+2^2+2+3^2+3+……+n^2+n
=(1+2+3+……+n)+(1^2+2^2+3^2+……+n^2)
=n(n+1)/2+(1^2+2^2+3^2+……+n^2)
关键求1^2+2^2+3^2+……+n^2
如下
2^3=(1+1)^3=1^3+3*1^2+3*1+1
3^3=(2+1)^3=2^3+3*2^2+2*2+1
…
(n+1)^3=n^3+3*n^2+3*n+1
一共n个式子加起来,2^3,3^3…,n^3左右都有,约去,剩下
(n+1)^3=3*(1^2+2^2…+n^2)+3*(1+2+…+n)+n 1+2+…+n=n*(n+1)/2
现在有思路了吗 仔细把这方法看懂 是关键 以后经常使用