两边对x求导:1-y'+0.5y'cosy=0, 得:y'=1/(1-0.5cosy)
于对x求导: y"=-1/(1-cosy)^2*(1-0.5cosy)'
=-1/(1-cosy)^2*(0.5y'siny), 再代入y'
=-0.5siny/(1-cosy)^3
也可以对f'(x)对x求导
y'=f'(x)=2/(2-cosy)
这样比较容易一点
y''=[0+siny*y']/(2-cosy)^2
=2siny/(2-cosy)/(2-cosy)^2
=2siny/(2-cosy)^3