f(x+2)=f[(x+1)+1]=-f(x+1)=f(x)
f(x+2)=f(x)
log1/3(1/32)=lg(1/32)/lg(1/3)=lg32/lg3=log3(32)
=log3(32/9*9)
=log3(32/9)+2
原式=f[log3(32/9)]
偶函数
=f[-log3(32/9)]
=f[log3(9/32)]
=f[log3(9/32)+2]
=f[log3(81/32)]
1<81/32<3
所以此时符合0
f(x+1)= - f(x)
f(x+3)=-f(x+2)=f(x+1)=-f(x)
log1/3 1/32
=log3(32)
=[log3(32)-3]+3
=log3(32/27)+3
而0
f(log1/3 1/32)
=f(log3(32/27)+3)
=-f(log3(32/27))
=-3^(log3(32/27))+1
=-(32/27)+1
=-5/27