设函数f(x)=ax3-3x+1(x∈R),若对于任意x∈[-1,1],都有f(x)≥0成立,则实数a的值为( )

2025-01-02 07:49:21
推荐回答(5个)
回答1:

(1)a=0时,-3x+1≥0在[-1,1]上不能恒成立
(2)a<0时,f’(x)=3ax^2-3<0,f(x)是减函数,其最小值为f(1).
若对x∈[-1,1],f(x)≥0恒成立,则需f(1)≥0
即a-3+1≥0 a≥2 又因a<0 所以此时无解.
(3)a>0时,
f(x)=ax^3-3x+1≥0恒成立,x∈[-1,1],
①x=0时,1≥0成立
②0令g(x)= (3x-1)/(x^3),求导得g’(x)=(3x^3-(3x-1)•3x^2)/(x^6)=(-6x+3)/(x^4)
易知0所以g(x)最大值为g(1/2)=4 ∴a≥4
③-1≤x<0时,a≤(3x-1)/(x^3)
g(x)= (3x-1)/(x^3),求导得g’(x)=(-6x+3)/(x^4)
可知g(x)在-1∴a≤4
由②知a≥4 ∴a=4.
综上知a=4.

回答2:

函数f(x)=ax^3-3x+1
当a<=0时,F’(x)<0,函数f(x)在定义域内单调减
当a>0时
F’(x)=3ax^2-3=0==>x1=-√a/a, x2=√a/a
F”(x)=6ax, F”(x1)= -6√a<0, F”(x)= 6√a>0
∴函数f(x)在x1处取极大值,在x2处取极小值
f(√a/a)=a(√a/a)^3-3(√a/a)+1=1-2√a/a>=0==>a>=4
f(-1)=-a+4>=0==>a<=4
∴若对于任意x∈[-1,1],都有f(x)≥0成立,则实数a的值为4

回答3:

(1)a=0时,-3x+1≥0在[-1,1]上不能恒成立(2)a<0时,f’(x)=3ax^2-3<0,f(x)是减函数,其最小值为f(1).若对x∈[-1,1],f(x)≥0恒成立,则需f(1)≥0即a-3+1≥0 a≥2 又因a<0 所以此时无解.(3)a>0时,f(x)=ax^3-3x+1≥0恒成立,x∈[-1,1],①x=0时,1≥0成立②0

回答4:

请用另一种方法解答

回答5:

a=3