(1)解:①1×4-22=4-4=0=1-1,
②2×5-32=10-9=1=2-1,
③3×6-42=18-16=2=3-1,
④4×7-52=28-25=3=4-1,
所以,4×7-52=4-1;
(2)解:第n个算式为:n(n+3)-(n+1)2=n-1;
(3)n(n+3)-(n+1)2=n-1一定成立.
证明:n(n+3)-(n+1)2=n2+3n-(n2-2n+1)=n2+3n-n2-2n-1,
=n-1,
即n(n+3)-(n+1)2=n-1.
故答案为:(1)4×7-52=4-1;(2)n(n+3)-(n+1)2=n-1.