后项比前项的绝对值的极限=|x|收敛域:|x|<1级数∑(n=1,∞)x^(n 1)=x^2/(1-x)=-1-x 1/(1-x)两边求导: ∑(n=1,∞)(n 1)x^(n)=x^2/(1-x)=-1 1/(1-x)^2再求导: ∑(n=1,∞)n(n 1)x^(n-1)=x^2/(1-x)=2/(1-x)^3所以:∑(n=1,∞)n(n 1)x^(n)=2x/(1-x)^3 |x|<1