∫xIn(x-1)dx用分部积分法求解?

高数中的一道题.
2024-12-12 23:39:11
推荐回答(2个)
回答1:

简单分析一下,答案如图所示

回答2:

∫xIn(x-1)dx=1/2∫In(x-1)dx²=1/2[x²In(x-1)-∫x²dIn(x-1)]=1/2[x²In(x-1)-∫x²/(x-1)dx]=1/2[x²In(x-1)-∫x²/(x-1)dx] 至此为止
皆为分部积分法
接下所使用的为换元积分法... 令t=x-1
则x=t+1
dx=dt∫x²/(x-1)dx=∫(t+1)²/tdt=∫(t+2+1/t)dt=1/2t²+2t+lnt+C=1/2(x-1)²+2(x-1)+ln(x-1)+C=1/2x²+x-3/2+ln(x-1)+C 综上
得∫xIn(x-1)dx=1/2{x²In(x-1)-[1/2x²+x-3/2+ln(x-1)+C]}=(1/2)x²In(x-1)-(1/2)ln(x-1)-(1/4)x²-(1/2)x+(3/4)-(1/2)C=(1/2)x²In(x-1)-(1/2)ln(x-1)-(1/4)x²-(1/2)x+C‘注:C与C'均为常数...最后两步分数加上括号是为了避免歧义
前面的分数也都是到数字为止
字母或括号开始部分不在分母...