求极限
∫1^a[1 / (x^2)]*dx
=- 1/x|(1^a)
=-1/x+1
lima-->++∞(-1/x+1)=1
所以∫1^+∞[1 / (x^2)]*dx =1
2.∫1^2[x / √(x-1)]*dx
设√(x-1)=t ,那么x=t^2+1
x∈[1,2],t∈[0,1]
dx=2tdt
∫1^2[x / √(x-1)]*dx
=∫0^1[(t^2+1)/t]2tdt
=2∫0^1[(t^2+1)dt
=2(1/3t^3+t)|(0,1)
=2(1/3+1)
=8/8