式子每一项可写为1/(n×(n+2))
上式可化为[1/n -1/(n+2)]/2
利用这个式子,则
1/(10*12)+1/(12*14)+1/(14*16)+1/(16*18)
=0.5×(1/10-1/12+1/12-1/14+1/14-1/16+1/16-1/18)
=0.5×(1/10-1/18)
=0.5×(5/90-4/90)
=0.5×1/90
=1/180
可以拆开 得 (1/2)*( 1/10-1/12+1/12-1/14+.......+1/16-1/18)=(1/2)*( 1/10-1/18)=1/45
解:原式 =2(1/10-1/12)+2(1/12-1/14)+2(1/14-1/16)+2(1/16-1/18)=2(1/10-1/12+1/12-1/14+1/14-1/16+1/16-1/18)=2(1/10-1/18)=4/45
1/(10*12)=1/2(1/10-1/12)
1/(10*12)+1/(12*14)+1/(14*16)+1/(16*18)
=1/2(1/10-1/12+1/12-1/14+1/14-1/16+1/16-1/18)
=1/2(1/10-1/18)
=1/45
1/(10*12)+1/(12*14)+1/(14*16)+1/(16*18)
=1/*2[1/10-1/12]+1/2*[1/12-1/14]+1/2*[1/14-1/16]+1/2*[1/16-1/18]
=1/2*[1/10-1/12+1/12-1/4+1/14-1/16+1/16-1/18]
=1/2*[1/10-1/18]
=1/2*(5/90-4/90)
=1/2*1/90
=1/180